Recent ocean acidification (OA) studies revealed that seawater [H+] rather than [CO2] or [ inline image] regulate short-term responses in carbon fluxes of Emiliania huxleyi. Here, we investigated whether acclimation to altered carbonate chemistry modulates this regulation pattern and how the carbon supply for calcification is affected by carbonate chemistry. We acclimated E. huxleyi to present-day (ambient [CO2], [ inline image], and pH) and OA conditions (high [CO2], ambient [ inline image], low pH). To differentiate between the CO2 and pH/H+ effects, we also acclimated cells to carbonation (high [CO2] and [ inline image], ambient pH) and acidification (ambient [CO2], low [ inline image], and pH). Under these conditions, growth, production of particulate inorganic and organic carbon, as well as carbon and oxygen fluxes were measured. Under carbonation, photosynthesis and calcification were stimulated due to additional inline image uptake, whereas growth was unaffected. Such stimulatory effects are not apparent after short-term carbonation, indicating that cells adjusted their carbon acquisition during acclimation. Being driven by [ inline image], these regulations can, however, not explain typical OA effects. Under acidification and OA, photosynthesis stayed constant, whereas calcification and growth decreased. Similar to the short-term responses toward high [H+], CO2 uptake significantly increased, but inline image uptake decreased. This antagonistic regulation in CO2 and inline image uptake can explain why photosynthesis, being able to use CO2 and inline image, often benefits from OA, whereas calcification, being mostly dependent on inline image, often decreases. We identified H+ as prime driver of coccolithophores' acclimation responses toward OA. Acidified conditions seem to put metabolic burdens on the cells that result in decreased growth.
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2016) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2017-03-10.
Supplement to: Kottmeier, Dorothee; Rokitta, Sebastian D; Rost, Björn (2016): H+-driven increase in CO2 uptake and decrease in HCO3- uptake explain coccolithophores' acclimation responses to ocean acidification. Limnology and Oceanography, 61(6), 2045-2057