Seawater carbonate chemistry and growth, elemental composition,biomass production, respiration and carbon acquisition of diatoms Thalassiosira hyalina and Melosira arctica

DOI

Sea ice retreat, changing stratification, and ocean acidification are fundamentally changing the light availability and physico-chemical conditions for primary producers in the Arctic Ocean. However, detailed studies on ecophysiological strategies and performance of key species in the pelagic and ice-associated habitat remain scarce. Therefore, we investigated the acclimated responses of the diatoms Thalassiosira hyalina and Melosira arctica toward elevated irradiance and CO2 partial pressures (pCO2). Next to growth, elemental composition, and biomass production, we assessed detailed photophysiological responses through fluorometry and gas-flux measurements, including respiration and carbon acquisition. In the pelagic T. hyalina, growth rates remained high in all treatments and biomass production increased strongly with light. Even under low irradiances cells maintained a high-light acclimated state, allowing them to opportunistically utilize high irradiances by means of a highly plastic photosynthetic machinery and carbon uptake. The ice-associated M. arctica proved to be less plastic and more specialized on low-light. Its acclimation to high irradiances was characterized by minimizing photon harvest and photosynthetic efficiency, which led to lowered growth. Comparably low growth rates and strong silification advocate a strategy of persistence rather than of fast proliferation, which is also in line with the observed formation of resting stages under low-light conditions. In both species, responses to elevated pCO2 were comparably minor. Although both diatom species persisted under the applied conditions, their competitive abilities and strategies differ strongly. With the anticipated extension of Arctic pelagic habitats, flexible high-light specialists like T. hyalina seem to face a brighter future.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2022-11-30.

Identifier
DOI https://doi.org/10.1594/PANGAEA.951402
Related Identifier https://doi.org/10.1002/lno.12174
Related Identifier https://doi.org/10.1594/PANGAEA.947543
Related Identifier https://cran.r-project.org/web/packages/seacarb/index.html
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.951402
Provenance
Creator Wolf, Klara K E ORCID logo; Rokitta, Sebastian D ORCID logo; Hoppe, Clara Jule Marie ORCID logo; Rost, Björn ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2022
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Dataset
Format text/tab-separated-values
Size 4737 data points
Discipline Earth System Research
Spatial Coverage (-4.838W, 78.917S, 11.933E, 79.554N)