Seawater carbonate chemistry and biochemical composition and nutritional properties of the commercially valuable oysters Magallana gigas and Ostrea edulis

DOI

Ocean acidification and warming may threaten future seafood production, safety and quality by negatively impacting the fitness of marine species. Identifying changes in nutritional quality, as well as species most at risk, is crucial if societies are to secure food production. Here, changes in the biochemical composition and nutritional properties of the commercially valuable oysters, Magallana gigas and Ostrea edulis, were evaluated following a 12-week exposure to six ocean acidification and warming scenarios that were designed to reflect the temperature (+3 °C above ambient) and atmospheric pCO2 conditions (increase of 350–600 ppm) predicted for the mid-to end-of-century. Results suggest that O. edulis, and especially M. gigas, are likely to become less nutritious (i.e. containing lower levels of protein, lipid, and carbohydrate), and have reduced caloric content under ocean acidification and warming. Important changes to essential mineral composition under ocean acidification and warming were evident in both species; enhanced accumulation of copper in M. gigas may be of concern regarding consumption safety. In light of these findings, the aquaculture industry may wish to consider a shift in focus toward species that are most robust to climate change and less prone to deterioration in quality, in order to secure future food provision and socio-economic benefits of aquaculture.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2022-09-26.

Identifier
DOI https://doi.org/10.1594/PANGAEA.949078
Related Identifier IsSupplementTo https://doi.org/10.1016/j.marenvres.2018.11.006
Related Identifier IsDocumentedBy https://cran.r-project.org/web/packages/seacarb/index.html
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.949078
Provenance
Creator Lemasson, Anaëlle J; Hall-Spencer, Jason M ORCID logo; Kuri, V ORCID logo; Knights, Antony M ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2022
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Dataset
Format text/tab-separated-values
Size 11142 data points
Discipline Earth System Research
Spatial Coverage (-4.221 LON, 50.392 LAT)
Temporal Coverage Begin 2015-07-01T00:00:00Z
Temporal Coverage End 2016-01-31T00:00:00Z