Seawater carbonate chemistry and mortality, abnormality, morphology, respiration of Heliocidaris crassispi

DOI

Metallic pollution is of particular concern in coastal cities. In the Asian megacity of Hong Kong, despite water qualities have improved over the past decade, some local zones are still particularly affected and could represent sinks for remobilization of labile toxic species such as copper. Ocean acidification is expected to increase the fraction of the most toxic form of copper (Cu2+) by 2.3-folds by 2100 (pH =7.7), increasing its bioavailability to marine organisms. Multiple stressors are likely to exert concomitant effects (additive, synergic or antagonist) on marine organisms.Here, we tested the hypothesis that copper contaminated waters are more toxic to sea urchin larvae under future pH conditions. We exposed sea urchin embryos and larvae to two low-pH and two copper treatments (0.1 and 1.0 μM) in three separate experiments. Over the short time typically used for toxicity tests (up to 4-arm plutei, i.e. 3 days), larvae of the sea urchin Heliocidaris crassispina were robust and survived the copper levels present in Hong Kong waters today (≤0.19 μM) as well as the average pH projected for 2100. We, however, observed significant mortality with lowering pH in the longer, single-stressor experiment (Expt A: 8-arm plutei, i.e. 9 days). Abnormality and arm asymmetry were significantly increased by pH or/and by copper presence (depending on the experiment and copper level). Body size (d3; but not body growth rates in Expt A) was significantly reduced by both lowered pH and added copper. Larval respiration (Expt A) was doubled by a decrease at pHT from 8.0 to 7.3 on d6. In Expt B1.0 and B0.1, larval morphology (relative arm lengths and stomach volume) were affected by at least one of the two investigated factors.Although the larvae appeared robust, these sub-lethal effects may have indirect consequences on feeding, swimming and ultimately survival. The complex relationship between pH and metal speciation/uptake is not well-characterized and further investigations are urgently needed to detangle the mechanisms involved and to identify possible caveats in routinely used toxicity tests.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2019) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2019-09-30.

Supplement to: Dorey, Narimane; Maboloc, Elizaldy; Chan, Kit Yu Karen (2018): Development of the sea urchin Heliocidaris crassispina from Hong Kong is robust to ocean acidification and copper contamination. Aquatic Toxicology, 205, 1-10

Identifier
DOI https://doi.org/10.1594/PANGAEA.907717
Related Identifier https://doi.org/10.1016/j.aquatox.2018.09.006
Related Identifier https://CRAN.R-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.907717
Provenance
Creator Dorey, Narimane ORCID logo; Maboloc, Elizaldy ORCID logo; Chan, Kit Yu Karen ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2018
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 82177 data points
Discipline Earth System Research
Spatial Coverage (114.268 LON, 22.357 LAT)