The influence of ocean acidification on nitrogen regeneration and nitrous oxide production in the northwest European shelf sea

DOI

The assimilation and regeneration of dissolved inorganic nitrogen, and the concentration of N2O, was investigated at stations located in the NW European shelf sea during June/July 2011. These observational measurements within the photic zone demonstrated the simultaneous regeneration and assimilation of NH4+, NO2- and NO3-. NH4+ was assimilated at 1.82-49.12 nmol N/L/h and regenerated at 3.46-14.60 nmol N/L/h; NO2- was assimilated at 0-2.08 nmol N/L/h and regenerated at 0.01-1.85 nmol N/L/h; NO3-was assimilated at 0.67-18.75 nmol N/L/h and regenerated at 0.05-28.97 nmol N/L/h. Observations implied that these processes were closely coupled at the regional scale and that nitrogen recycling played an important role in sustaining phytoplankton growth during the summer. The [N2O], measured in water column profiles, was 10.13 ± 1.11 nmol/L and did not strongly diverge from atmospheric equilibrium indicating that sampled marine regions were neither a strong source nor sink of N2O to the atmosphere. Multivariate analysis of data describing water column biogeochemistry and its links to N-cycling activity failed to explain the observed variance in rates of N-regeneration and N-assimilation, possibly due to the limited number of process rate observations. In the surface waters of five further stations, ocean acidification (OA) bioassay experiments were conducted to investigate the response of NH4+ oxidising and regenerating organisms to simulated OA conditions, including the implications for [N2O]. Multivariate analysis was undertaken which considered the complete bioassay data set of measured variables describing changes in N-regeneration rate, [N2O] and the biogeochemical composition of seawater. While anticipating biogeochemical differences between locations, we aimed to test the hypothesis that the underlying mechanism through which pelagic N-regeneration responded to simulated OA conditions was independent of location. Our objective was to develop a mechanistic understanding of how NH4+ regeneration, NH4+ oxidation and N2O production responded to OA. Results indicated that N-regeneration process responses to OA treatments were location specific; no mechanistic understanding of how N-regeneration processes respond to OA in the surface ocean of the NW European shelf sea could be developed.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne et al, 2014) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2014-10-28.

Identifier
DOI https://doi.org/10.1594/PANGAEA.837515
Related Identifier References https://doi.org/10.5194/bg-11-4985-2014
Related Identifier IsNewVersionOf https://doi.org/10.5285/f44043b2-b9f0-71f2-e044-000b5de50f38
Related Identifier IsDocumentedBy https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.837515
Provenance
Creator Clark, Darren; Brown, Ian ORCID logo; Rees, Andrew ORCID logo; Somerfield, Paul J ORCID logo; Miller, P I ORCID logo
Publisher PANGAEA
Contributor Dumousseaud, Cynthia; MacGilchrist, G A; Stinchcombe, Mark Colin; Holland, Ross J; Hopkins, Frances E; Yang, Yan
Publication Year 2014
Funding Reference Natural Environment Research Council https://doi.org/10.13039/501100000270 Crossref Funder ID NE/H017305/1 https://gtr.ukri.org/projects?ref=NE%2FH017305%2F1 Impacts of ocean acidification on key benthic ecosystems, communities, habitats, species and life cycles
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Dataset
Format text/tab-separated-values
Size 12526 data points
Discipline Earth System Research
Spatial Coverage (-7.083W, 46.202S, 3.159E, 56.788N)
Temporal Coverage Begin 2011-06-08T02:00:00Z
Temporal Coverage End 2011-07-02T02:00:00Z