ISA 2020/2022 presentation: XRF Ink analysis of selected fragments from the Herculaneum collection

DOI

XRF Ink analysis of selected fragments from the Herculaneum collection

Hundreds of papyrus rolls, carbonized during the 79CE eruption of Mount Vesuvius, were discovered in 1754 at Herculaneum. Sophisticated mechanical methods for unrolling the best-preserved scrolls have been applied, with varying success. However, such processes have been abandoned, to prevent risk from irremediable damage or loss and to preserve the integrity of the extremely fragile rolls. Following the development of X-ray based non-invasive techniques, attempts to virtually unroll the scrolls were made. The most common ink in Antiquity was carbon-based, and the main element of carbonized papyrus is carbon, making these investigations difficult. However, some attempts with synchrotron X-ray phase-contrast tomography (XPCT) were successful. Recently, the identification of antique inks containing metals raised hope that if some of the inks contain metal the rolls can be virtually unrolled using conventional CT- technique. We investigated the inks of a selection of partially unrolled fragments stored at the Biblioteca Nazionale di Napoli with X-ray fluorescence in order to select the best candidates for tomography. Despite the many difficulties (analysis of several layers sticking together, letters barely visible, difficulty to separate contribution from the ink and from the papyrus, inhomogeneity of the support, fragility of the fragments…), encouraging results were found, with a number of inks from Greek fragments found to contain additions to the soot (Fe, Pb, Cu P).

The research for this project was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – EXC 2176 'Understanding Written Artefacts: Material, Interaction and Transmission in Manuscript Cultures', project no. 390893796. The research was conducted within the scope of the Centre for the Study of Manuscript Cultures (CSMC) at Universität Hamburg in collaboration with the Bundesanstalt für Materialforschung und -prüfung (BAM).

Identifier
DOI https://doi.org/10.25592/uhhfdm.12426
Related Identifier https://doi.org/10.25592/uhhfdm.12425
Metadata Access https://www.fdr.uni-hamburg.de/oai2d?verb=GetRecord&metadataPrefix=oai_datacite&identifier=oai:fdr.uni-hamburg.de:12426
Provenance
Creator Bonnerot, Olivier ORCID logo; Del Mastro, Gianluca; Hammerstaedt, Jürgen; Mocella, Vito; Rabin, Ira ORCID logo
Publisher Universität Hamburg
Publication Year 2023
Rights Creative Commons Attribution 4.0 International; Open Access; https://creativecommons.org/licenses/by/4.0/legalcode; info:eu-repo/semantics/openAccess
OpenAccess true
Representation
Language English
Resource Type Poster; Text
Discipline Humanities