Seawater carbonate chemistry and impact of different carbonate system parameters on benthic foraminifera from controlled growth experiments

DOI

Insights into past marine carbon cycling and water mass properties can be obtained by means of geochemical proxies calibrated through controlled laboratory experiments with accurate seawater carbonate system (C-system) manipulations. Here, we explored the use of strontium/calcium ratio (Sr/Ca) of the calcite shells of benthic foraminifera as a potential seawater C-system proxy through a controlled growth experiment with two deep-sea species (Bulimina marginata and Cassidulina laevigata) and one intertidal species (Ammonia T6). To this aim, we used two experimental set-ups to decouple as much as possible the individual components of the carbonate system, i.e., changing pH at constant dissolved inorganic carbon (DIC) and changing DIC at constant pH. Four climatic chambers were used with different controlled concentrations of atmospheric pCO2 (180 ppm, 410 ppm, 1000 ppm, 1500 ppm). Our results demonstrated that pH did not influence the survival and growth of the three species. However, low DIC conditions (879 μmol kg−1) negatively affected B. marginata and C. laevigata through reduced growth, whereas no effect was observed for Ammonia T6. Our results also showed that Sr/Ca was positively correlated with total Alkalinity (TA), DIC and bicarbonate ion concentration ([HCO3−]) for Ammonia T6 and B. marginata; i.e., DIC and/or [HCO3−] were the main controlling factors. For these two species, the regression models were coherent with published data (existing so far only for Ammonia T6) and showed overall similar slopes but different intercepts, implying species-specific effects. Furthermore, the Sr/Ca – C-system relationship was not impacted by ontogenetic trends between chamber stages, which is a considerable advantage for paleo-applications. This applied particularly to Ammonia T6 that calcified many chambers compared to the two other species. However, no correlation with any of the C-system parameters was observed for Sr/Ca in C. laevigata. This might imply either a strong species-specific effect and/or a low tolerance to laboratory conditions leading to a physiological stress, thereby impacting the Sr incorporation into the calcite lattice of C. laevigata.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2022) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2023-04-20.

Identifier
DOI https://doi.org/10.1594/PANGAEA.957794
Related Identifier https://doi.org/10.1016/j.chemgeo.2023.121396
Related Identifier https://doi.org/10.17882/89623
Related Identifier https://cran.r-project.org/web/packages/seacarb/index.html
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.957794
Provenance
Creator Mojtahid, Meryem; Depuydt, Pauline ORCID logo; Mouret, Aurélia ORCID logo; Le Houedec, Sandrine ORCID logo; Fiorini, Sarah; Chollet, S; Massol, F; Dohou, F; Filipsson, Helena L ORCID logo; Boer, Wim; Reichart, Gert-Jan ORCID logo; Barras, Christine
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2023
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Dataset
Format text/tab-separated-values
Size 35101 data points
Discipline Earth System Research
Spatial Coverage (11.508 LON, 58.281 LAT)