We present mass and radius measurements of K2-79b and K2-222b, two transiting exoplanets orbiting active G-type stars observed with HARPS-N and K2. Their respective 10.99day and 15.39day orbital periods fall near periods of signals induced by stellar magnetic activity. The two signals might therefore interfere and lead to an inaccurate estimate of exoplanet mass. We present a method to mitigate these effects when radial velocity (RV) and activity-indicator observations are available over multiple observing seasons and the orbital period of the exoplanet is known. We perform correlation and periodogram analyses on subsets composed of each target's two observing seasons, in addition to the full data sets. For both targets, these analyses reveal an optimal season with little to no interference at the orbital period of the known exoplanet. We make a confident mass detection of each exoplanet by confirming agreement between fits to the full RV set and the optimal season. For K2-79b, we measure a mass of 11.8{+/-}3.6M{Earth} and a radius of 4.09{+/-}0.17R{Earth}. For K2-222b, we measure a mass of 8.0{+/-}1.8M{Earth} and a radius of 2.35{+/-}0.08R{Earth}. According to model predictions, K2-79b is a highly irradiated Uranus analog and K2-222b hosts significant amounts of water ice. We also present a RV solution for a candidate second companion orbiting K2-222 at 147.5days.