Seawater carbonate chemistry of experiment on behavioural resilience of European sea bass to ocean acidification

DOI

Ocean acidification (OA)—caused by rising concentrations of carbon dioxide (CO2)—is thought to be a major threat to marine ecosystems and has been shown to induce behavioural alterations in fish. Here we show behavioural resilience to near-future OA in a commercially important and migratory marine finfish, the Sea bass (Dicentrarchus labrax). Sea bass were raised from eggs at 19°C in ambient or near-future OA (1000 µatm pCO2) conditions and n = 270 fish were observed 59–68 days post-hatch using automated tracking from video. Fish reared under ambient conditions, OA conditions, and fish reared in ambient conditions but tested in OA water showed statistically similar movement patterns, and reacted to their environment and interacted with each other in comparable ways. Thus our findings indicate behavioural resilience to near-future OA in juvenile sea bass. Moreover, simulated agent-based models indicate that our analysis methods are sensitive to subtle changes in fish behaviour. It is now important to determine whether the absences of any differences persist under more ecologically relevant circumstances and in contexts which have a more direct bearing on individual fitness.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2022-12-19.

Identifier
DOI https://doi.org/10.1594/PANGAEA.952481
Related Identifier https://doi.org/10.1098/rsos.160656
Related Identifier https://doi.org/10.5194/bg-11-2519-2014
Related Identifier https://doi.org/10.5061/dryad.2dc8k
Related Identifier https://cran.r-project.org/web/packages/seacarb/index.html
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.952481
Provenance
Creator Duteil, Mathieu; Pope, E C ORCID logo; Pérez-Escudero, A ORCID logo; de Polavieja, G G ORCID logo; Fürtbauer, Ines; Brown, M Rowan ORCID logo; King, Andrew J ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2016
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Dataset
Format text/tab-separated-values
Size 144 data points
Discipline Earth System Research