Obliquities of 150 hot Kepler hosting stars

DOI

It has been known for a decade that hot stars with hot Jupiters tend to have high obliquities. Less is known about the degree of spin-orbit alignment for hot stars with other kinds of planets. Here, we reassess the obliquities of hot Kepler stars with transiting planets smaller than Neptune, based on spectroscopic measurements of their projected rotation velocities (vsini). The basis of the method is that a lower obliquity-all other things being equal-causes sini to be closer to unity and increases the value of vsini. We sought evidence for this effect using a sample of 150 Kepler stars with effective temperatures between 5950 and 6550K and a control sample of 101 stars with matching spectroscopic properties and random orientations. The planet hosts have systematically higher values of vsini than the control stars, but not by enough to be compatible with perfect spin-orbit alignment. The mean value of sini is 0.856{+/-}0.036, which is 4{sigma} away from unity (perfect alignment), and 2{sigma} away from {pi}/4 (random orientations). There is also evidence that the hottest stars have a broader obliquity distribution: when modeled separately, the stars cooler than 6250K have <sini<=0.928{+/-}0.042 while the hotter stars are consistent with random orientations. This is similar to the pattern previously noted for stars with hot Jupiters. Based on these results, obliquity excitation for early-G and late-F stars appears to be a general outcome of star and planet formation, rather than being exclusively linked to hot Jupiter formation.

Cone search capability for table J/AJ/161/68/table1 (Spectroscopic properties of the planet hosts)

Cone search capability for table J/AJ/161/68/table2 (Spectroscopic properties of the control stars)

Identifier
DOI http://doi.org/10.26093/cds/vizier.51610068
Source https://dc.g-vo.org/rr/q/lp/custom/CDS.VizieR/J/AJ/161/68
Related Identifier https://cdsarc.cds.unistra.fr/viz-bin/cat/J/AJ/161/68
Related Identifier http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/AJ/161/68
Metadata Access http://dc.g-vo.org/rr/q/pmh/pubreg.xml?verb=GetRecord&metadataPrefix=oai_b2find&identifier=ivo://CDS.VizieR/J/AJ/161/68
Provenance
Creator Louden E.M.; Winn J.N.; Petigura E.A.; Isaacson H.; Howard A.W.; Masuda K.,Albrecht S.; Kosiarek M.R.
Publisher CDS
Publication Year 2021
Rights https://cds.unistra.fr/vizier-org/licences_vizier.html
OpenAccess true
Contact CDS support team <cds-question(at)unistra.fr>
Representation
Resource Type Dataset; AstroObjects
Discipline Astrophysics and Astronomy; Exoplanet Astronomy; Interdisciplinary Astronomy; Natural Sciences; Observational Astronomy; Physics; Stellar Astronomy