Fundamental changes in seawater carbonate chemistry and sea surface temperatures associated with the ocean uptake of anthropogenic CO2 are accelerating, but investigations of the susceptibility of biogeochemical processes to the simultaneous occurrence of multiple components of climate change are uncommon. Here, we quantify how concurrent changes in enhanced temperature and atmospheric pCO2, coupled with an associated shift in macrofaunal community structure and behavior (sediment particle reworking and bioirrigation), modify net carbon and nutrient concentrations (NH4-N, NOx-N, PO4-P) in representative shelf sea sediment habitats (mud, sandy-mud, muddy-sand and sand) of the Celtic Sea. We show that net concentrations of organic carbon, nitrogen and phosphate are, irrespective of sediment type, largely unaffected by a simultaneous increase in temperature and atmospheric pCO2. However, our analyses also reveal that a reduction in macrofaunal species richness and total abundance occurs under future environmental conditions, varies across a gradient of cohesive to non-cohesive sediments, and negatively moderates biogeochemical processes, in particular nitrification. Our findings indicate that future environmental conditions are unlikely to have strong direct effects on biogeochemical processes but, particularly in muddy sands, the abundance, activity, composition and functional role of invertebrate communities are likely to be altered in ways that will be sufficient to regulate the function of the microbial community and the availability of nutrients in shelf sea waters.
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2022) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2023-05-15.