Antagonistic effects of ocean acidification and rising sea surface temperature on the dissolution of coral reef carbonate sediments, supplement to: Trnovsky, Daniel; Stoltenberg, Laura; Cyronak, Tyler; Eyre, Bradley D (2016): Antagonistic Effects of Ocean Acidification and Rising Sea Surface Temperature on the Dissolution of Coral Reef Carbonate Sediments. Frontiers in Marine Science, 3

DOI

Increasing atmospheric CO2 is raising sea surface temperature (SST) and increasing seawater CO2 concentrations, resulting in a lower oceanic pH (ocean acidification; OA), which is expected to reduce the accretion of coral reef ecosystems. Although sediments comprise most of the calcium carbonate (CaCO3) within coral reefs, no in situ studies have looked at the combined effects of increased SST and OA on the dissolution of coral reef CaCO3 sediments. In situ benthic chamber incubations were used to measure dissolution rates in permeable CaCO3 sands under future OA and SST scenarios in a coral reef lagoon on Australia's Great Barrier Reef (Heron Island). End of century (2100) simulations (temperature +2.7°C and pH -0.3) shifted carbonate sediments from net precipitating to net dissolving. Warming increased the rate of benthic respiration (R) by 29% per 1°C and lowered the ratio of productivity to respiration (P/R; delta P/R = -0.23), which increased the rate of CaCO3 sediment dissolution (average net increase of 18.9 mmol CaCO3/m2/d for business as usual scenarios). This is most likely due to the influence of warming on benthic P/R which, in turn, was an important control on sediment dissolution through the respiratory production of CO2. The effect of increasing CO2 on CaCO3 sediment dissolution (average net increase of 6.5 mmol CaCO3/m2/d for business as usual scenarios) was significantly less than the effect of warming. However, the combined effect of increasing both SST and pCO2 on CaCO3 sediment dissolution was non-additive (average net increase of 5.6 mmol CaCO3/m**2/d) due to the different responses of the benthic community. This study highlights that benthic biogeochemical processes such as metabolism and associated CaCO3 sediment dissolution respond rapidly to changes in SST and OA, and that the response to multiple environmental changes are not necessarily additive.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2016) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2017-03-15. Fluxes were calculated by subtracting the average flux of the controls from the flux within each treatment chamber.

Identifier
DOI https://doi.org/10.1594/PANGAEA.873542
Related Identifier https://doi.org/10.3389/fmars.2016.00211
Related Identifier https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.873542
Provenance
Creator Trnovsky, Daniel; Stoltenberg, Laura; Cyronak, Tyler; Eyre, Bradley D
Publisher PANGAEA - Data Publisher for Earth & Environmental Science
Contributor Yang, Yan
Publication Year 2016
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Language English
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 390 data points
Discipline Immunology; Life Sciences; Medicine; Microbiology, Virology and Immunology
Spatial Coverage (151.915 LON, -23.442 LAT)