Seawater carbonate chemistry and live coral performance vs. framework dissolution and bioerosion

DOI

Physiological sensitivity of cold-water corals to ocean change is far less understood than of tropical corals and very little is known about the impacts of ocean acidification and warming on degradative processes of dead coral framework. In a 13-month laboratory experiment, we examined the interactive effects of gradually increasing temperature and pCO2 levels on survival, growth, and respiration of two prominent color morphotypes (colormorphs) of the framework-forming cold-water coral Lophelia pertusa, as well as bioerosion and dissolution of dead framework. Calcification rates tended to increase with warming, showing temperature optima at ~ 14°C (white colormorph) and 10–12°C (orange colormorph) and decreased with increasing pCO2. Net dissolution occurred at aragonite undersaturation (ΩAr < 1) at ~ 1000 μatm pCO2. Under combined warming and acidification, the negative effects of acidification on growth were initially mitigated, but at ~ 1600 μatm dissolution prevailed. Respiration rates increased with warming, more strongly in orange corals, while acidification slightly suppressed respiration. Calcification and respiration rates as well as polyp mortality were consistently higher in orange corals. Mortality increased considerably at 14–15°C in both colormorphs. Bioerosion/dissolution of dead framework was not affected by warming alone but was significantly enhanced by acidification. While live corals may cope with intermediate levels of elevated pCO2 and temperature, long-term impacts beyond levels projected for the end of this century will likely lead to skeletal dissolution and increased mortality. Our findings further suggest that acidification causes accelerated degradation of dead framework even at aragonite saturated conditions, which will eventually compromise the structural integrity of cold-water coral reefs.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2022-12-21.

Identifier
DOI https://doi.org/10.1594/PANGAEA.952909
Related Identifier https://doi.org/10.1002/lno.12217
Related Identifier https://doi.org/10.1594/PANGAEA.947285
Related Identifier https://cran.r-project.org/web/packages/seacarb/index.html
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.952909
Provenance
Creator Büscher, Janina ORCID logo; Form, Armin; Wisshak, Max ORCID logo; Kiko, Rainer ORCID logo; Riebesell, Ulf (ORCID: 0000-0002-9442-452X)
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2022
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Dataset
Format text/tab-separated-values
Size 21772 data points
Discipline Earth System Research
Spatial Coverage (9.380 LON, 63.607 LAT)