Seawater carbonate chemistry and particulate organic particles during an incubation experiments with natural phytoplankton community, 2002

DOI

Incubation experiments with natural phytoplankton revealed a relationship between CO2 concentration and the production of transparent exopolymer particles (TEP), with TEP production being linearly related to theoretical CO2 uptake rates. The effect of different CO2 concentrations on TEP production was examined during incubation experiments with natural phytoplankton sampled at two different locations in the central Baltic Sea in summer 1999.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI).

Supplement to: Engel, Anja (2002): Direct relationship between CO2 uptake and transparent exopolymer particles production in natural phytoplankton. Journal of Plankton Research, 24(1), 49-53

Identifier
DOI https://doi.org/10.1594/PANGAEA.717963
Related Identifier IsSupplementTo https://doi.org/10.1093/plankt/24.1.49
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.717963
Provenance
Creator Engel, Anja ORCID logo
Publisher PANGAEA
Contributor Nisumaa, Anne-Marin
Publication Year 2002
Funding Reference Seventh Framework Programme https://doi.org/10.13039/100011102 Crossref Funder ID 211384 https://cordis.europa.eu/project/id/211384 European Project on Ocean Acidification; Sixth Framework Programme https://doi.org/10.13039/100011103 Crossref Funder ID 511106 https://cordis.europa.eu/project/id/511106 European network of excellence for Ocean Ecosystems Analysis
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 336 data points
Discipline Earth System Research