Seawater carbonate chemistry and processes during experiments with cyanobacterium Trichodesmium (IMS101), 2009


We investigated carbon acquisition by the N2-fixing cyanobacterium Trichodesmium IMS101 in response to CO2 levels of 15.1, 37.5, and 101.3 Pa (equivalent to 150, 370, and 1000 ppm). In these acclimations, growth rates as well as cellular C and N contents were measured. In vivo activities of carbonic anhydrase (CA), photosynthetic O2 evolution, and CO2 and HCO3- fluxes were measured using membrane inlet mass spectrometry and the 14C disequilibrium technique. While no differences in growth rates were observed, elevated CO2 levels caused higher C and N quotas and stimulated photosynthesis and N2 fixation. Minimal extracellular CA (eCA) activity was observed, indicating a minor role in carbon acquisition. Rates of CO2 uptake were small relative to total inorganic carbon (Ci) fixation, whereas HCO{3 contributed more than 90% and varied only slightly over the light period and between CO2 treatments. The low eCA activity and preference for HCO3- were verified by the 14C disequilibrium technique. Regarding apparent affinities, half-saturation concentrations (K1/2) for photosynthetic O2 evolution and HCO3- uptake changed markedly over the day and with CO2 concentration. Leakage (CO2 efflux : Ci uptake) showed pronounced diurnal changes. Our findings do not support a direct CO2 effect on the carboxylation efficiency of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) but point to a shift in resource allocation among photosynthesis, carbon acquisition, and N2 fixation under elevated CO2 levels. The observed increase in photosynthesis and N2fixation could have potential biogeochemical implications, as it may stimulate productivity in N-limited oligotrophic regions and thus provide a negative feedback in rising atmospheric CO2 levels.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI).

Supplement to: Kranz, Sven A; Sültemeyer, Dieter; Richter, Klaus-Uwe; Rost, Björn (2009): Carbon acquisition by Trichodesmium: the effect of pCO2 and diurnal changes. Limnology and Oceanography, 54(2), 548-559

Related Identifier
Metadata Access
Creator Kranz, Sven A; Sültemeyer, Dieter; Richter, Klaus-Uwe; Rost, Björn
Publisher PANGAEA
Contributor Nisumaa, Anne-Marin
Publication Year 2009
Funding Reference Seventh Framework Programme, 211384; Sixth Framework Programme, 511106
Rights Creative Commons Attribution 3.0 Unported;
OpenAccess true
Language English
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 96 data points
Discipline Earth System Research