Seawater carbonate chemistry and data of physiological response of a golden tide alga (Sargassum muticum) to the interaction of ocean acidification and phosphorus enrichment

DOI

The development of golden tides is potentially influenced by global change factors, such as ocean acidification and eutrophication, but related studies are very scarce. In this study, we cultured a golden tide alga, Sargasssum muticum, at two levels of pCO2 (400 and 1000 µatm) and phosphate (0.5 and 40?µM) to investigate the interactive effects of elevated pCO2 and phosphate on the physiological properties of the thalli. Higher pCO2 and phosphate (P) levels alone increased the relative growth rate by 41 and 48%, the net photosynthetic rate by 46 and 55 %, and the soluble carbohydrates by 33 and 62 %, respectively, while the combination of these two levels did not promote growth or soluble carbohydrates further. The higher levels of pCO2 and P alone also enhanced the nitrate uptake rate by 68 and 36 %, the nitrate reductase activity (NRA) by 89 and 39 %, and the soluble protein by 19 and 15 %, respectively. The nitrate uptake rate and soluble protein was further enhanced, although the nitrate reductase activity was reduced when the higher levels of pCO2 and P worked together. The higher pCO2 and higher P levels alone did not affect the dark respiration rate of the thalli, but together they increased it by 32 % compared to the condition of lower pCO2 and lower P. The neutral effect of the higher levels of pCO2 and higher P on growth and soluble carbohydrates, combined with the promoting effect on soluble protein and dark respiration, suggests that more energy was drawn from carbon assimilation to nitrogen assimilation under conditions of higher pCO2 and higher P; this is most likely to act against the higher pCO2 that caused acid-base perturbation via synthesizing H+ transport-related protein. Our results indicate that ocean acidification and eutrophication may not boost golden tide events synergistically, although each one has a promoting effect.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2016) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2017-05-17.

Supplement to: Xu, Zhiguang; Gao, Guang; Xu, Juntian; Wu, Hongyan (2017): Physiological response of a golden tide alga (Sargassum muticum) to the interaction of ocean acidification and phosphorus enrichment. Biogeosciences, 14(3), 671-681

Identifier
DOI https://doi.org/10.1594/PANGAEA.875342
Related Identifier https://doi.org/10.5194/bg-14-671-2017
Related Identifier https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.875342
Provenance
Creator Xu, Zhiguang; Gao, Guang ORCID logo; Xu, Juntian; Wu, Hongyan
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2017
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 1312 data points
Discipline Earth System Research
Spatial Coverage (122.583 LON, 37.250 LAT)