Seawater carbonate chemistry and physiology and toxicity of dinoflagellate Karenia mikimotoi


A batch culture experiment was conducted to study the interactive effects of ocean acidification (OA) and solar ultraviolet radiation (UVR, 280–400 nm) on the harmful dinoflagellate Karenia mikimotoi. Cells were incubated in 7-days trials under four treatments. Physiological (growth, pigments, UVabc) and toxicity (hemolytic activity and its toxicity to zebrafish embryos) response variables were measured in four treatments, representing two factorial combinations of CO2 (400 and 1000 μatm) and solar irradiance (with or without UVR). Toxic species K. mikimotoi showed sustained growth in all treatments, and there was not statistically significant difference among four treatments. Cell pigment content decreased, but UVabc and hemolytic activity increased in all HC treatments and PAB conditions. The toxicity to zebrafish embryos of K. mikimotoi was not significantly different among four treatments. All HC and UVR conditions and the combinations of HCUVR (HC-PAB) positively affected the UVabc, hemolytic activity in comparison to the LCP (LC-P) treatment, and negatively affected the pigments. Ocean acidification (OA) was probably the main factor that affected the chlorophyll-a (Chl-a) and UVabc, but UVR was the main factor that affected the carotenoid (Caro) and hemolytic activity. There were no significant interactive effects of OA*UVR on growth, toxicity to zebrafish embryos. If these results are extrapolated to the natural environment, it can be hypothesized that this strain (DP-C32) of K. mikimotoi cells have the efficient mechanisms to endure the combination of ocean acidification and solar UVR. It is assumed that this toxic strain could form harmful bloom and enlarge the threatening to coastal communities, marine animals, even human health under future conditions.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2019) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2020-09-27.

Related Identifier
Related Identifier
Metadata Access
Creator Wang, Xinjie; Feng, Xinqian; Zhuang, Yang; Lu, Jianghuan; Wang, Yang; Gonçalves, Rodrigo J; Li, Xi; Lou, Yongliang; Guan, WanChun
Publisher PANGAEA - Data Publisher for Earth & Environmental Science
Contributor Yang, Yan
Publication Year 2019
Rights Creative Commons Attribution 4.0 International;
OpenAccess true
Language English
Resource Type Dataset
Format text/tab-separated-values
Size 68105 data points
Discipline Immunology; Life Sciences; Medicine; Microbiology, Virology and Immunology