-
Seawater carbonate chemistry and the physiological responses of harmful dinof...
The HAB-forming, toxic dinoflagellate Karenia mikimotoi, previously found to benefit from ocean acidification (OA), was cultivated to investigate its transcriptional response to... -
Seawater carbonate chemistry and elemental contents and macromolecules of the...
Elemental contents change with shifts in macromolecular composition of marine phytoplankton. Recent studies focus on the responses of elemental contents of coccolithophores, a... -
Seawater carbonate chemistry and specific growth rate, respiration rate, net ...
Experimentally elevated pCO2 and the associated pH drop are known to differentially affect many aspects of the physiology of diatoms under different environmental conditions or... -
Seawater carbonate chemistry and photosynthesis and calcification of the cocc...
Photophysiological responses of phytoplankton to changing multiple environmental drivers are essential in understanding and predicting ecological consequences of ocean climate... -
Seawater carbonate chemistry and physiological performance in the Coccolithop...
While seawater acidification induced by elevated CO2 is known to impact coccolithophores, the effects in combination with decreased salinity caused by sea ice melting and/or... -
Seawater carbonate chemistry and CO2 acquisition efficiency and mitochondrial...
Diatom responses to ocean acidification have been documented with variable and controversial results. We grew the coastal diatom Thalassiosira weissflogii under 410 (LC, pH... -
Seawater carbonate chemistry and physiology and toxicity of dinoflagellate Ka...
A batch culture experiment was conducted to study the interactive effects of ocean acidification (OA) and solar ultraviolet radiation (UVR, 280–400 nm) on the harmful... -
Seawater carbonate chemistry and growth and particulate organic nitrogen prod...
Phytoplankton in the upper oceans are exposed to changing light levels due to mixing, diurnal solar cycles and weather conditions. Consequently, effects of ocean acidification... -
Seawater carbonate chemistry and photosynthetic pigments and photophysiology ...
Ocean acidification, due to increased levels of anthropogenic carbon dioxide, is known to affect the physiology and growth of marine phytoplankton, especially in polar regions.... -
Seawater carbonate chemistry and photophysiology and hemolytic activity of th...
Due to global climate change, marine phytoplankton will likely experience low pH (ocean acidification), high temperatures and high irradiance in the future. Here, this work... -
Seawater carbonate chemistry and photosynthetic performance of Thalassiosira ...
The purpose of this study was to investigate the effects of ocean acidification and nutrient level on the growth and photosynthetic performance of the diatom Thalassiosira... -
Decreased photosynthesis and growth with reduced respiration in the model dia...
Studies on the long-term responses of marine phytoplankton to ongoing ocean acidification (OA) are appearing rapidly in the literature. However, only a few of these have... -
The impact of fluctuating light on the dinoflagellate Prorocentrum micans dep...
Increasing atmospheric pCO2 and its dissolution into oceans leads to ocean acidification and warming, which reduces the thickness of upper mixing layer (UML) and upward nutrient... -
Light-modulated responses of growth and photosynthetic performance to ocean a...
Ocean acidification (OA) due to atmospheric CO2 rise is expected to influence marine primary productivity. In order to investigate the interactive effects of OA and light... -
Interactive effects of ocean acidification and nitrogen limitation on the dia...
Climate change is expected to bring about alterations in the marine physical and chemical environment that will induce changes in the concentration of dissolved CO2 and in... -
Reduced calcification decreases photoprotective capability in the Coccolithop...
Intracellular calcification of coccolithophores generates CO2 and consumes additional energy for acquisition of calcium and bicarbonate ions; therefore, it may correlate with...