The O2, pH and Ca2+ Microenvironment of Benthic Foraminifera in a High CO2 World, supplement to: Glas, Martin S; Fabricius, Katharina Elisabeth; de Beer, Dirk; Uthicke, Sven; Gilbert, Jack Anthony (2012): The O2, pH and Ca2+ Microenvironment of Benthic Foraminifera in a High CO2 World. PLoS ONE, 7(11), e50010

DOI

Ocean acidification (OA) can have adverse effects on marine calcifiers. Yet, phototrophic marine calcifiers elevate their external oxygen and pH microenvironment in daylight, through the uptake of dissolved inorganic carbon (DIC) by photosynthesis. We studied to which extent pH elevation within their microenvironments in daylight can counteract ambient seawater pH reductions, i.e. OA conditions. We measured the O2 and pH microenvironment of four photosymbiotic and two symbiont-free benthic tropical foraminiferal species at three different OA treatments (~432, 1141 and 2151 µatm pCO2). The O2 concentration difference between the seawater and the test surface (delta O2) was taken as a measure for the photosynthetic rate. Our results showed that O2 and pH levels were significantly higher on photosymbiotic foraminiferal surfaces in light than in dark conditions, and than on surfaces of symbiont-free foraminifera. Rates of photosynthesis at saturated light conditions did not change significantly between OA treatments (except in individuals that exhibited symbiont loss, i.e. bleaching, at elevated pCO2). The pH at the cell surface decreased during incubations at elevated pCO2, also during light incubations. Photosynthesis increased the surface pH but this increase was insufficient to compensate for ambient seawater pH decreases. We thus conclude that photosynthesis does only partly protect symbiont bearing foraminifera against OA.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne et al, 2014) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2014-06-19.

Identifier
DOI https://doi.org/10.1594/PANGAEA.833612
Related Identifier https://doi.org/10.1371/journal.pone.0050010
Related Identifier https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.833612
Provenance
Creator Glas, Martin S; Fabricius, Katharina Elisabeth; de Beer, Dirk; Uthicke, Sven; Gilbert, Jack Anthony
Publisher PANGAEA - Data Publisher for Earth & Environmental Science
Contributor Yang, Yan
Publication Year 2012
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Language English
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 22899 data points
Discipline Earth System Research