Seawater carbonate chemistry, calcification, primary production and respiration of a temperate rhodolith Lithothamnion corallioides in a laboratory experiment

DOI

Coralline algae are considered among the most sensitive species to near future ocean acidification. We tested the effects of elevated pCO2 on the metabolism of the free-living coralline alga Lithothamnion corallioides ("maerl") and the interactions with changes in temperature. Specimens were collected in North Brittany (France) and grown for 3 months at pCO2 of 380 (ambient pCO2), 550, 750, and 1000 µatm (elevated pCO2) and at successive temperatures of 10°C (ambient temperature in winter), 16°C (ambient temperature in summer), and 19°C (ambient temperature in summer +3°C). At each temperature, gross primary production, respiration (oxygen flux), and calcification (alkalinity flux) rates were assessed in the light and dark. Pigments were determined by HPLC. Chl a, carotene, and zeaxanthin were the three major pigments found in L. corallioides thalli. Elevated pCO2 did not affect pigment content while temperature slightly decreased zeaxanthin and carotene content at 10°C. Gross production was not affected by temperature but was significantly affected by pCO2 with an increase between 380 and 550 µatm. Light, dark, and diel (24 h) calcification rates strongly decreased with increasing pCO2 regardless of the temperature. Although elevated pCO2 only slightly affected gross production in L. corallioides, diel net calcification was reduced by up to 80% under the 1,000 µatm treatment. Our findings suggested that near future levels of CO2 will have profound consequences for carbon and carbonate budgets in rhodolith beds and for the sustainability of these habitats.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2014-03-17.

Supplement to: Noisette, Fanny; Duong, Gwendoline; Six, Christophe; Davoult, Dominique; Martin, Sophie (2013): Effects of elevated pCO2 on the metabolism of a temperate rhodolith Lithothamnion corallioides grown under different temperatures. Journal of Phycology, 49(4), 746-757

Identifier
DOI https://doi.org/10.1594/PANGAEA.830639
Related Identifier https://doi.org/10.1111/jpy.12085
Related Identifier https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.830639
Provenance
Creator Noisette, Fanny ORCID logo; Duong, Gwendoline; Six, Christophe; Davoult, Dominique ORCID logo; Martin, Sophie ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2013
Funding Reference Seventh Framework Programme https://doi.org/10.13039/100011102 Crossref Funder ID 211384 https://cordis.europa.eu/project/id/211384 European Project on Ocean Acidification
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 5796 data points
Discipline Earth System Research
Spatial Coverage (-4.416 LON, 48.296 LAT)
Temporal Coverage Begin 2010-12-15T00:00:00Z
Temporal Coverage End 2010-12-30T00:00:00Z