The carbon-to-oxygen ratio in a protoplanetary disk can have a dramatic influence on the compositions of any terrestrial planets formed. In regions of high C/O, planets form primarily from carbonates, and in regions of low C/O, the ratio of magnesium to silicon determines the types of silicates that dominate the compositions. We present C/O and Mg/Si ratios for 852 F, G, and K dwarfs in the solar neighborhood. We find that the frequency of carbon-rich dwarfs in the solar neighborhood is <0.13% and that 156 known planet hosts in the sample follow a similar distribution as all of the stars as a whole. The cosmic distribution of Mg/Si for these same stars is broader than the C/O distribution and peaks near 1.0, with ~60% of systems having 1<=Mg/Si<2, leading to rocky planet compositions similar to the Earth. This leaves 40% of systems that can have planets that are silicate-rich and that may have very different compositions than our own.
Cone search capability for table J/ApJ/831/20/table1 (Stellar C/O and Mg/Si ratios (corrected version from the author))