Small planets on close-in orbits tend to exhibit envelope mass fractions of either effectively zero or up to a few percent depending on their size and orbital period. Models of thermally driven atmospheric mass loss and of terrestrial planet formation in a gas-poor environment make distinct predictions regarding the location of this rocky/nonrocky transition in period-radius space. Here we present the confirmation of TOI-1235b (P=3.44days, r_p_=1.738_-0.076_^+0.087^R_{Earth}), a planet whose size and period are intermediate between the competing model predictions, thus making the system an important test case for emergence models of the rocky/nonrocky transition around early M dwarfs (R_s=0.630{+/-}0.015R_{sun}, M_s=0.640{+/-}0.016M_{sun}). We confirm the TESS planet discovery using reconnaissance spectroscopy, ground-based photometry, high- resolution imaging, and a set of 38 precise radial velocities (RVs) from HARPS-N and HIRES. We measure a planet mass of 6.91-0.85_^+0.75^M_{Earth}, which implies an iron core mass fraction of 20-12_^+15^% in the absence of a gaseous envelope. The bulk composition of TOI-1235b is therefore consistent with being Earth-like, and we constrain an H/He envelope mass fraction to be <0.5% at 90% confidence. Our results are consistent with model predictions from thermally driven atmospheric mass loss but not with gas-poor formation, suggesting that the former class of processes remains efficient at sculpting close-in planets around early M dwarfs. Our RV analysis also reveals a strong periodicity close to the first harmonic of the photometrically determined stellar rotation period that we treat as stellar activity, despite other lines of evidence favoring a planetary origin (P=21.8_-0.8_^+0.9^days, m_p_sini=13.0_-5.3_^+3.8^M_{Earth}_) that cannot be firmly ruled out by our data.