Interactive effects of ocean acidification and nitrogen limitation on two bloom-forming dinoflagellate species

DOI

Global climate change involves an increase in oceanic CO2 concentrations as well as thermal stratification of the water column, thereby reducing nutrient supply from deep to surface waters. Changes in inorganic carbon (C) or nitrogen (N) availability have been shown to affect marine primary production, yet little is known about their interactive effects. To test for these effects, we conducted continuous culture experiments under N limitation and exposed the bloom-forming dinoflagellate species Scrippsiella trochoidea and Alexandrium fundyense (formerly A. tamarense) to CO2 partial pressures ( pCO2) ranging between 250 and 1000 µatm. Ratios of particulate organic carbon (POC) to organic nitrogen (PON) were elevated under N limitation, but also showed a decreasing trend with increasing pCO2. PON production rates were highest and affinities for dissolved inorganic N were lowest under elevated pCO2, and our data thus demonstrate a CO2-dependent trade-off in N assimilation. In A. fundyense, quotas of paralytic shellfish poisoning toxins were lowered under N limitation, but the offset to those obtained under N-replete conditions became smaller with increasing pCO2. Consequently, cellular toxicity under N limitation was highest under elevated pCO2. All in all, our observations imply reduced N stress under elevated pCO2, which we attribute to a reallocation of energy from C to N assimilation as a consequence of lowered costs in C acquisition. Such interactive effects of ocean acidification and nutrient limitation may favor species with adjustable carbon concentrating mechanisms and have consequences for their competitive success in a future ocean.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2016) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2016-11-22.

Supplement to: Eberlein, Tim; Van de Waal, Dedmer B; Brandenburg, Karen; John, Uwe; Voss, Maren; Achterberg, Eric Pieter; Rost, Björn (2016): Interactive effects of ocean acidification and nitrogen limitation on two bloom-forming dinoflagellate species. Marine Ecology Progress Series, 543, 127-140

Identifier
DOI https://doi.org/10.1594/PANGAEA.868682
Related Identifier https://doi.org/10.3354/meps11568
Related Identifier https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.868682
Provenance
Creator Eberlein, Tim; Van de Waal, Dedmer B ORCID logo; Brandenburg, Karen ORCID logo; John, Uwe ORCID logo; Voss, Maren ORCID logo; Achterberg, Eric Pieter; Rost, Björn ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2016
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 880 data points
Discipline Immunology; Life Sciences; Medicine; Microbiology, Virology and Immunology