Seawater carbonate chemistry and biological processes during experiments with Patella vulgata, 2010


The effect of short-term (5 days) exposure to CO2-acidified seawater (year 2100 predicted values, ocean pH = 7.6) on key aspects of the function of the intertidal common limpet Patella vulgata (Gastropoda: Patellidae) was investigated. Changes in extracellular acid-base balance were almost completely compensated by an increase in bicarbonate ions. A concomitant increase in haemolymph Ca2+ and visible shell dissolution implicated passive shell dissolution as the bicarbonate source. Analysis of the radula using SEM revealed that individuals from the hypercapnic treatment showed an increase in the number of damaged teeth and the extent to which such teeth were damaged compared with controls. As radula teeth are composed mainly of chitin, acid dissolution seems unlikely, and so the proximate cause of damage is unknown. There was no hypercapnia-related change in metabolism (O2 uptake) or feeding rate, also discounting the possibility that teeth damage was a result of a CO2-related increase in grazing. We conclude that although the limpet appears to have the physiological capacity to maintain its extracellular acid-base balance, metabolism and feeding rate over a 5 days exposure to acidified seawater, radular damage somehow incurred during this time could still compromise feeding in the longer term, in turn decreasing the top-down ecosystem control that P. vulgata exerts over rocky shore environments.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI).

Supplement to: Marchant, Hannah K; Calosi, Piero; Spicer, John I (2010): Short-term exposure to hypercapnia does not compromise feeding, acid–base balance or respiration of Patella vulgata but surprisingly is accompanied by radula damage. Journal of the Marine Biological Association of the United Kingdom, 90(7), 1379-1384

Related Identifier
Metadata Access
Creator Marchant, Hannah K ORCID logo; Calosi, Piero ORCID logo; Spicer, John I
Publisher PANGAEA
Contributor Nisumaa, Anne-Marin
Publication Year 2010
Funding Reference Seventh Framework Programme Crossref Funder ID 211384 European Project on Ocean Acidification; Sixth Framework Programme Crossref Funder ID 511106 European network of excellence for Ocean Ecosystems Analysis
Rights Creative Commons Attribution 3.0 Unported;
OpenAccess true
Language English
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 480 data points
Discipline Earth System Research