Seawater carbonate chemistry and sperm swimming speed of the polychaete Galeolaria caespitosa in lab experiment

DOI

The rapidity of ocean acidification intensifies selection pressure for resilient phenotypes, particularly during sensitive early life stages. The scope for selection is greater in species with greater within-species variation in responses to changing environments, thus enhancing the potential for adaptation. We investigated among-male variation in sperm swimming responses (percent motility and swimming speeds) of the serpulid polychaete Galeolaria caespitosa to near- (delta pH 0.3) and far-future ocean acidification (delta pH 0.5). Responses of sperm swimming to acidification varied significantly among males and were overall negative. Robust sperm swimming behavior under near-future ocean acidification in some males may ameliorate climate change impacts, if traits associated with robustness are heritable, and thereby enhance the potential for adaptation to far-future conditions. Reduced sperm swimming in the majority of male G. caespitosa may decrease their fertilization success in a high CO2 future ocean. Resultant changes in offspring production could affect recruitment success and population fitness downstream.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2013-11-19.

Supplement to: Schlegel, Peter; Havenhand, Jonathan N; Obadia, Nicolas; Williamson, Jane E (2014): Sperm swimming in the polychaete Galeolaria caespitosa shows substantial inter-individual variability in response to future ocean acidification. Marine Pollution Bulletin, 78(1-2), 213-217

Identifier
DOI https://doi.org/10.1594/PANGAEA.823080
Related Identifier https://doi.org/10.1016/j.marpolbul.2013.10.040
Related Identifier https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.823080
Provenance
Creator Schlegel, Peter; Havenhand, Jonathan N ORCID logo; Obadia, Nicolas; Williamson, Jane E ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2014
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 1403 data points
Discipline Earth System Research
Spatial Coverage (151.268 LON, -33.800 LAT)
Temporal Coverage Begin 2011-11-01T00:00:00Z
Temporal Coverage End 2011-12-31T00:00:00Z