From organic fragments to photoswitchable catalysts: the off-on structural repository for transferable kernel-based potentials

Structurally and conformationally diverse databases are needed to train accurate neural networks or kernel-based potentials capable of exploring the complex free energy landscape of flexible functional organic molecules. Curating such databases for species beyond “simple” drug-like compounds or molecules comprised of well-defined building blocks (e.g., peptides) is challenging, as it requires thorough chemical space mapping and evaluation of both chemical and conformational diversity. Here, we introduce the OFF–ON (Organic Fragments From Organocatalysts that are Non-modular) database, a repository of 7,869 equilibrium and 67,457 non--equilibrium geometries of organic compounds and dimers aimed at describing conformationally flexible functional organic molecules, with an emphasis on photoswitchable organocatalysts. The relevance of this database is then demonstrated by training a Local Kernel Regression model on a low-cost semiempirical baseline and comparing it with a PBE0-D3 reference for several known catalysts, notably the free energy surfaces of exemplary photoswitchable organocatalysts. Our results demonstrate that the OFF–ON dataset offers reliable predictions for simulating the conformational behavior of virtually any (photoswitchable) organocatalyst or organic compound comprised of H, C, N, O, F, and S atoms, thereby opening a computationally feasible route to explore complex free energy surfaces in order to rationalize and predict catalytic behavior.

Identifier
Source https://archive.materialscloud.org/record/2023.189
Metadata Access https://archive.materialscloud.org/xml?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:materialscloud.org:2011
Provenance
Creator Célerse, Frédéric; Wodrich, Matthew D.; Vela, Sergi; Gallarati, Simone; Fabregat, Raimon; Juraskova, Veronika; Corminboeuf, Clémence
Publisher Materials Cloud
Publication Year 2023
Rights info:eu-repo/semantics/openAccess; Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode
OpenAccess true
Contact archive(at)materialscloud.org
Representation
Language English
Resource Type Dataset
Discipline Materials Science and Engineering