Replication Data for: Are nuclear masks all you need for improved out-of-domain generalization? A closer look at cancer classification in histopathology

DOI

This dataset is a processed version of the CAMELYON17 dataset used in the NeurIPS 2024 paper "Are nuclear masks all you need for improved out-of-domain generalization? A closer look at cancer classification in histopathology". It consists of patches / tiles from 50 Whole Slide Images (WSIs) (10 WSIs from each of the 5 hospitals) in the CAMELYON17 dataset that have tumour segmentation available. Tiles were picked such that each hospital has equal number of tumourous and non-tumours tiles. Each tile is of size 270x270 pixels. A tile is considered tumourous if the centre region of tile (90x90 pixels in size) has at least 1 pixel that lies inside the tumour segmentation map. The dataset also contains nuclear segmentation masks for all the tiles. Masks were generated using HoVer-Net trained on the CoNSeP dataset.

Identifier
DOI https://doi.org/10.18710/NXPLFL
Metadata Access https://dataverse.no/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.18710/NXPLFL
Provenance
Creator Tomar, Dhananjay ORCID logo
Publisher DataverseNO
Contributor Tomar, Dhananjay; University of Oslo
Publication Year 2024
Rights CC0 1.0; info:eu-repo/semantics/openAccess; http://creativecommons.org/publicdomain/zero/1.0
OpenAccess true
Contact Tomar, Dhananjay (University of Oslo)
Representation
Resource Type Images; Dataset
Format text/plain; text/comma-separated-values; application/x-tar
Size 5707; 30543730; 1273661440; 46243840; 43612160; 1388861440; 1028505600; 28375040; 3743621120; 104058880; 2226851840; 70881280; 30924800; 837365760; 947025920; 33669120; 404459520; 10588160; 4133888000; 147456000; 32798720; 1079132160; 583505920; 19650560; 61112320; 1621288960; 477061120; 18196480; 84858880; 2718259200; 10700800; 253081600; 37201920; 900823040; 40878080; 1331230720; 735692800; 28190720; 13742080; 343623680; 734279680; 27279360; 17448960; 858542080; 1037199360; 25896960; 41902080; 1915699200; 51599360; 1480734720; 71352320; 2083543040; 34549760; 1166909440; 34600960; 1002332160; 1257820160; 27514880; 9734359040; 290693120; 3514470400; 108236800; 133120000; 3079966720; 35932160; 984698880; 2372812800; 82298880; 1174466560; 37877760; 36075520; 1031802880; 1895761920; 70819840; 3297228800; 124282880; 1561169920; 55910400; 15654973440; 560640000; 188385280; 5410396160; 1601843200; 45854720; 2686238720; 111667200; 78991360; 1967779840; 1847193600; 77803520; 72622080; 1886464000; 1577318400; 58910720; 49152000; 1141084160; 3484303360; 151930880; 434595840; 14043402240; 3907850240; 112926720
Version 1.0
Discipline Other