DualSleep dataset for accelerometer-based sleep/wakefulness recognition

DOI

The DualSleep dataset contains acceleration and temperature overnight recordings of 29 participants wearing two accelerometers at the thigh and lower back, together with the corresponding sleep stages/annotations (Wake, Non-REM1, Non-REM2, Non-REM3, REM, Movement). The annotation were created using simultaneous Polysomnography recordings. The study protocol was approved by the Regional Committee for Medical and Health research ethics (reference no. 2015/1748/REK midt) and all participants signed a written informed consent before being enrolled in the study.

The DualSleep dataset was used for machine learning experiments in our published paper: "A machine learning model for predicting sleep and wakefulness based on accelerometry, skin temperature and contextual information" (https://doi.org/10.2147/NSS.S452799)

Identifier
DOI https://doi.org/10.18710/UGNIFE
Related Identifier IsCitedBy https://doi.org/10.2147/NSS.S452799
Metadata Access https://dataverse.no/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.18710/UGNIFE
Provenance
Creator Logacjov, Aleksej ORCID logo; Skarpsno, Eivind Schjelderup ORCID logo; Kongsvold, Atle ORCID logo; Bach, Kerstin ORCID logo; Mork, Paul Jarle ORCID logo
Publisher DataverseNO
Contributor Logacjov, Aleksej; Skarpsno, Eivind Schjelderup; Kongsvold, Atle; Bach, Kerstin; Mork, Paul Jarle; NTNU – Norwegian University of Science and Technology; Logacjov Aleksej; paul.mork(at)ntnu.no
Publication Year 2024
Funding Reference NTNU Health, Norwegian University of Science and Technology ; NTNU Health, Norwegian University of Science and Technology grant no. 81771516
Rights CC0 1.0; info:eu-repo/semantics/openAccess; http://creativecommons.org/publicdomain/zero/1.0
OpenAccess true
Contact Logacjov, Aleksej (NTNU – Norwegian University of Science and Technology); Skarpsno, Eivind Schjelderup (NTNU – Norwegian University of Science and Technology); Kongsvold, Atle (NTNU – Norwegian University of Science and Technology); Bach, Kerstin (NTNU – Norwegian University of Science and Technology); Mork, Paul Jarle (NTNU – Norwegian University of Science and Technology)
Representation
Resource Type sensor data; Dataset
Format text/plain; text/comma-separated-values
Size 7001; 348473721; 274824071; 258649555; 355022968; 324303243; 352454354; 325477279; 333996844; 308415784; 301199130; 281586994; 260678527; 345410653; 328638585; 350615167; 282517672; 272010021; 311347402; 333818554; 334770660; 338876518; 338151170; 357395521; 348675255; 376840391; 394714994; 412207082; 343415968; 350510932
Version 1.0
Discipline Life Sciences; Medicine