Mineralogical response of the Mediterranean crustose coralline alga Lithophyllum cabiochae to near-future ocean acidification and warming

DOI

Red calcareous coralline algae are thought to be among the organisms most vulnerable to ocean acidification due to the high solubility of their magnesium calcite skeleton. Although skeletal mineralogy is proposed to change as CO2 and temperature continue to rise, there is currently very little information available on the response of coralline algal carbonate mineralogy to near-future changes in pCO2 and temperature. Here we present results from a 1-year controlled laboratory experiment to test mineralogical responses to pCO2 and temperature in the Mediterranean crustose coralline alga (CCA) Lithophyllum cabiochae. Our results show that Mg incorporation is mainly constrained by temperature (+1 mol % MgCO3 for an increase of 3 °C), and there was no response to pCO2. This suggests that L. cabiochae thalli have the ability to buffer their calcifying medium against ocean acidification, thereby enabling them to continue to deposit magnesium calcite with a significant mol % MgCO3 under elevated pCO2. Analyses of CCA dissolution chips showed a decrease in Mg content after 1 year for all treatments, but this was affected neither by pCO2 nor by temperature. Our findings suggest that biological processes exert a strong control on calcification on magnesium calcite and that CCA may be more resilient under rising CO2 than previously thought. However, previously demonstrated increased skeletal dissolution with ocean acidification will still have major consequences for the stability and maintenance of Mediterranean coralligenous habitats.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2013-11-27.

Supplement to: Nash, Merinda C; Martin, Sophie; Gattuso, Jean-Pierre (2016): Mineralogical response of the Mediterranean crustose coralline alga Lithophyllum cabiochae to near-future ocean acidification and warming. Biogeosciences, 13(21), 5937-5945

Identifier
DOI https://doi.org/10.1594/PANGAEA.873857
Related Identifier https://doi.org/10.5194/bg-13-5937-2016
Related Identifier https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.873857
Provenance
Creator Nash, Merinda C; Martin, Sophie ORCID logo; Gattuso, Jean-Pierre ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2016
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 3680 data points
Discipline Earth System Research
Spatial Coverage (7.323 LON, 43.679 LAT); Mediterranean Sea
Temporal Coverage Begin 2006-07-10T00:00:00Z
Temporal Coverage End 2007-07-10T00:00:00Z