Seawater carbonate chemistry and whole community and functional gene changes of bioflms on marine plastic debris

DOI

Plastics are accumulating in the world's oceans, while ocean waters are becoming acidified by increased CO2. We compared metagenome of biofilms on tethered plastic bottles in subtidal waters off Japan naturally enriched in CO2, compared to normal ambient CO2 levels. Extending from an earlier amplicon study of bacteria, we used metagenomics to provide direct insights into changes in the full range of functional genes and the entire taxonomic tree of life in the context of the changing plastisphere. We found changes in the taxonomic community composition of all branches of life. This included a large increase in diatom relative abundance across the treatments but a decrease in diatom diversity. Network complexity among families decreased with acidification, showing overall simplification of biofilm integration. With acidification, there was decreased prevalence of genes associated with cell–cell interactions and antibiotic resistance, decreased detoxification genes, and increased stress tolerance genes. There were few nutrient cycling gene changes, suggesting that the role of plastisphere biofilms in nutrient processes within an acidified ocean may not change greatly. Our results suggest that as ocean CO2 increases, the plastisphere will undergo broad-ranging changes in both functional and taxonomic composition, especially the ecologically important diatom group, with possible wider implications for ocean ecology.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2022-07-22.

Identifier
DOI https://doi.org/10.1594/PANGAEA.946567
Related Identifier IsSupplementTo https://doi.org/10.1007/s00248-022-01987-w
Related Identifier IsDocumentedBy https://cran.r-project.org/web/packages/seacarb/index.html
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.946567
Provenance
Creator Kerfahi, Dorsaf; Harvey, Ben P ORCID logo; Kim, Hyoki; Yang, Ying; Adams, Jonathan M ORCID logo; Hall-Spencer, Jason M ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2022
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Dataset
Format text/tab-separated-values
Size 22824 data points
Discipline Earth System Research
Spatial Coverage (139.333 LON, 34.533 LAT)