Abundances for 3 stars in Sgr dSph

DOI

From chemical abundance analysis of stars in the Sagittarius dwarf spheroidal galaxy (Sgr), we conclude that the {alpha}-element deficiencies cannot be due to the Type Ia supernova (SN Ia) time-delay scenario of Tinsley. Instead, the evidence points to low [{alpha}/Fe] ratios resulting from an initial mass function (IMF) deficient in the highest mass stars. The critical evidence is the 0.4 dex deficiency of [O/Fe], [Mg/Fe], and other hydrostatic elements, contrasting with the normal trend of r-process [Eu/Fe]r with [Fe/H]. Supporting evidence comes from the hydrostatic element (O, Mg, Na, Al, Cu) [X/Fe] ratios, which are inconsistent with iron added to the Milky Way (MW) disk trends. Also, the ratio of hydrostatic to explosive (Si, Ca, Ti) element abundances suggests a relatively top-light IMF. Abundance similarities with the LMC, Fornax, and IC 1613 suggest that their {alpha}-element deficiencies also resulted from IMFs lacking the most massive SNe II. The top-light IMF, as well as the normal trend of r-process [Eu/Fe]r with [Fe/H] in Sgr, indicates that massive SNe II (>~30M_{sun}) are not major sources of r-process elements. High [La/Y] ratios, consistent with leaky-box chemical evolution, are confirmed but ~0.3 dex larger than theoretical asymptotic giant branch (AGB) predictions. This suggests that a substantial increase in the theoretical ^13^C pocket in low-mass AGB stars is required. Sgr has the lowest [Rb/Zr] ratios known, consistent with pollution by low-mass (<~2M{sun}_) AGB stars near [Fe/H]=-0.6, likely resulting from leaky-box chemical evolution. The [Cu/O] trends in Sgr and the MW suggest that Cu yields increase with both metallicity and stellar mass, as expected from Cu production by the weak s-process in massive stars. Finally, we present an updated hyperfine splitting line list, an abundance analysis of Arcturus, and further develop our error analysis formalism.

Cone search capability for table J/ApJ/778/149/stars (Observations and adopted model atmosphere parameters (tables 1 and 6))

Identifier
DOI http://doi.org/10.26093/cds/vizier.17780149
Source https://dc.g-vo.org/rr/q/lp/custom/CDS.VizieR/J/ApJ/778/149
Related Identifier https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJ/778/149
Related Identifier http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/ApJ/778/149
Metadata Access http://dc.g-vo.org/rr/q/pmh/pubreg.xml?verb=GetRecord&metadataPrefix=oai_b2find&identifier=ivo://CDS.VizieR/J/ApJ/778/149
Provenance
Creator McWilliam A.; Wallerstein G.; Mottini M.
Publisher CDS
Publication Year 2015
Rights https://cds.unistra.fr/vizier-org/licences_vizier.html
OpenAccess true
Contact CDS support team <cds-question(at)unistra.fr>
Representation
Resource Type Dataset; AstroObjects
Discipline Astrophysics and Astronomy; Interdisciplinary Astronomy; Natural Sciences; Observational Astronomy; Physics