Emission-line strengths for 129 galaxies

DOI

We propose a method to substantially increase the flexibility and power of template fitting-based photometric redshifts by transforming a large number of galaxy spectral templates into a corresponding collection of 'fuzzy archetypes' using a suitable set of perturbative priors designed to account for empirical variation in dust attenuation and emission-line strengths. To bypass widely separated degeneracies in parameter space (e.g. the redshift-reddening degeneracy), we train self-organizing maps (SOMs) on large 'model catalogues' generated from Monte Carlo sampling of our fuzzy archetypes to cluster the predicted observables in a topologically smooth fashion. Subsequent sampling over the SOM then allows full reconstruction of the relevant probability distribution functions (PDFs). This combined approach enables the multimodal exploration of known variation among galaxy spectral energy distributions with minimal modelling assumptions. We demonstrate the power of this approach to recover full redshift PDFs using discrete Markov chain Monte Carlo sampling methods combined with SOMs constructed from Large Synoptic Survey Telescope ugrizY and Euclid YJH mock photometry.

Cone search capability for table J/MNRAS/469/1186/tablea1 (Emission-line strengths for the 129 Brown et al. (2014, Cat. J/ApJS/212/18) templates)

Identifier
DOI http://doi.org/10.26093/cds/vizier.74691186
Source https://dc.g-vo.org/rr/q/lp/custom/CDS.VizieR/J/MNRAS/469/1186
Related Identifier https://cdsarc.cds.unistra.fr/viz-bin/cat/J/MNRAS/469/1186
Related Identifier http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/MNRAS/469/1186
Metadata Access http://dc.g-vo.org/rr/q/pmh/pubreg.xml?verb=GetRecord&metadataPrefix=oai_b2find&identifier=ivo://CDS.VizieR/J/MNRAS/469/1186
Provenance
Creator Speagle J.S.; Eisenstein D.J.
Publisher CDS
Publication Year 2020
Rights https://cds.unistra.fr/vizier-org/licences_vizier.html
OpenAccess true
Contact CDS support team <cds-question(at)unistra.fr>
Representation
Resource Type Dataset; AstroObjects
Discipline Astrophysics and Astronomy; Galactic and extragalactic Astronomy; Interdisciplinary Astronomy; Natural Sciences; Observational Astronomy; Physics