Surgical Error Detection Dataset for 'SEDMamba: Enhancing Selective State Space Modelling with Bottleneck Mechanism and Fine-to-Coarse Temporal Fusion for Efficient Error Detection in Robot-Assisted Surgery'

DOI

This dataset contains error annotations used in our IEEE RA-L paper titled 'SEDMamba: Enhancing Selective State Space Modelling with Bottleneck Mechanism and Fine-to-Coarse Temporal Fusion for Efficient Error Detection in Robot-Assisted Surgery'.We consider 24 error types for 48 videos from the SAR-RARP50 dataset. Each frame is labelled as either 'normal' (0) if no error is present or 'error' (1) if any error type occurs. It contains spatial embedding sequences, binary error annotations, and corresponding frame names at the frame level, sampled at 5Hz. For detailed implementation, please refer to the SEDMamba code.If you use this error annotation dataset, please cite the SEDMamba paper.

Identifier
DOI https://doi.org/10.5522/04/27992702.v1
Related Identifier HasPart https://ndownloader.figshare.com/files/51062660
Related Identifier IsPartOf https://github.com/wzjialang/SEDMamba
Related Identifier IsPublishedIn https://doi.org/10.1109/LRA.2024.3505818
Related Identifier IsSupplementTo https://rdr.ucl.ac.uk/projects/SAR-RARP50_Segmentation_of_surgical_instrumentation_and_Action_Recognition_on_Robot-Assisted_Radical_Prostatectomy_Challenge/191091
Metadata Access https://api.figshare.com/v2/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=oai:figshare.com:article/27992702
Provenance
Creator Xu, Jialang ORCID logo; Sirajudeen, Nazir; Boal, Matthew; Francis, Nader; Stoyanov, Danail ORCID logo; Mazomenos, Evangelos ORCID logo
Publisher University College London UCL
Contributor Figshare
Publication Year 2024
Rights https://creativecommons.org/licenses/by-nc-sa/4.0/
OpenAccess true
Contact researchdatarepository(at)ucl.ac.uk
Representation
Language English
Resource Type Dataset
Discipline Other