Interannual stability of organic to inorganic carbon production on a coral atoll

DOI

Ocean acidification has the potential to adversely affect marine calcifying organisms, with substantial ocean ecosystem impacts projected over the 21st century. Characterizing the in situ sensitivity of calcifying ecosystems to natural variability in carbonate chemistry may improve our understanding of the long-term impacts of ocean acidification. We explore the potential for intensive temporal sampling to isolate the influence of carbonate chemistry on community calcification rates of a coral reef and compare the ratio of organic to inorganic carbon production to previous studies at the same location. Even with intensive temporal sampling, community calcification displays only a weak dependence on carbonate chemistry variability. However, across three years of sampling, the ratio of organic to inorganic carbon production is highly consistent. Although further work is required to quantify the spatial variability associated with such ratios, this suggests that these measurements have the potential to indicate the response of coral reefs to ongoing disturbance, ocean acidification, and climate change.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2016) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2016-12-09.

Supplement to: Kwiatkowski, Lester; Albright, R; Hosfelt, J D; Nebuchina, Yana; Ninokawa, Aaron; Rivlin, Tanya; Sesboüé, Marine; Wolfe, Kennedy; Caldeira, Ken (2016): Interannual stability of organic to inorganic carbon production on a coral atoll. Geophysical Research Letters, 43(8), 3880-3888

Identifier
DOI https://doi.org/10.1594/PANGAEA.869292
Related Identifier IsSupplementTo https://doi.org/10.1002/2016GL068723
Related Identifier IsDocumentedBy https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.869292
Provenance
Creator Kwiatkowski, Lester ORCID logo; Albright, R ORCID logo; Hosfelt, J D; Nebuchina, Yana; Ninokawa, Aaron ORCID logo; Rivlin, Tanya; Sesboüé, Marine; Wolfe, Kennedy ORCID logo; Caldeira, Ken
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2016
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 4158 data points
Discipline Earth System Research
Spatial Coverage (152.100 LON, -23.500 LAT)
Temporal Coverage Begin 2014-09-12T00:00:00Z
Temporal Coverage End 2014-10-10T00:00:00Z