Tracers of stellar mass-loss. I.

We present optical and IR integrated colours and SBF magnitudes, computed from stellar population synthesis models that include emission from the dusty envelopes surrounding TP-AGB stars undergoing mass-loss. We explore the effects of varying the mass-loss rate by one order of magnitude around the fiducial value, modifying accordingly both the stellar parameters and the output spectra of the TP-AGB stars plus their dusty envelopes. The models are single burst, and range in age from a few Myr to 14Gyr, and in metallicity between Z=0.0001 and Z=0.07; they combine new calculations for the evolution of stars in the TP-AGB phase, with star plus envelope SEDs produced with the radiative transfer code DUSTY. We compare these models to optical and near-IR data of single AGB stars and Magellanic star clusters. This comparison validates the current understanding of the role of mass-loss in determining stellar parameters and spectra in the TP-AGB. However, neither broad-band colours nor SBF measurements in the optical or the near-IR can discern global changes in the mass-loss rate of a stellar population. We predict that mid-IR SBF measurements can pick out such changes, and actually resolve whether a relation between metallicity and mass-loss exists.

Identifier
Source https://dc.g-vo.org/rr/q/lp/custom/CDS.VizieR/J/MNRAS/403/1213
Related Identifier https://cdsarc.cds.unistra.fr/viz-bin/cat/J/MNRAS/403/1213
Related Identifier http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/MNRAS/403/1213
Metadata Access http://dc.g-vo.org/rr/q/pmh/pubreg.xml?verb=GetRecord&metadataPrefix=oai_b2find&identifier=ivo://CDS.VizieR/J/MNRAS/403/1213
Provenance
Creator Gonzalez-Lopezlira R.A.; Bruzual-A. G.; Charlot S.; Ballesteros-Paredes J.,Loinard L.
Publisher CDS
Publication Year 2010
Rights https://cds.unistra.fr/vizier-org/licences_vizier.html
OpenAccess true
Contact CDS support team <cds-question(at)unistra.fr>
Representation
Resource Type Dataset; AstroObjects
Discipline Astrophysics and Astronomy; Natural Sciences; Observational Astronomy; Physics; Stellar Astronomy