A dataset for beta-glycine with Wannier centers

DOI

The beta-glycine dataset is created with the purpose of validating the electron machine learning potential (eMLP) on crystalline beta glycine. It contains 25,676 configurations with normal mode perturbations for the nuclei and unit cell and electric field perturbations. Energies, forces and Wannier centers are computed using density functional theory (DFT) with the PBE functional and a Plane-Wave basis set in the ab-initio quantum chemistry code QuantumESPRESSO.

Identifier
DOI https://doi.org/10.24435/materialscloud:jn-44
Related Identifier https://doi.org/10.1021/acs.jctc.1c00978
Related Identifier https://archive.materialscloud.org/communities/mcarchive
Related Identifier https://doi.org/10.24435/materialscloud:kp-yt
Metadata Access https://archive.materialscloud.org/oai2d?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:materialscloud.org:1028
Provenance
Creator Cools-Ceuppens, Maarten; Dambre, Joni; Verstraelen, Toon
Publisher Materials Cloud
Contributor Cools-Ceuppens, Maarten; Verstraelen, Toon
Publication Year 2021
Rights info:eu-repo/semantics/openAccess; Creative Commons Attribution Share Alike 4.0 International; https://creativecommons.org/licenses/by-sa/4.0/legalcode
OpenAccess true
Contact archive(at)materialscloud.org
Representation
Language English
Resource Type info:eu-repo/semantics/other
Format application/gzip; chemical/x-xyz; text/plain; text/markdown
Discipline Materials Science and Engineering