AGN activity in isolated SDSS galaxies

We discuss the nature and origin of the nuclear activity observed in a sample of 292 SDSS narrow-emission-line galaxies, considered to have formed and evolved in isolation. All these galaxies are spiral like and show some kind of nuclear activity. The fraction of Narrow Line AGNs (NLAGNs) and Transition type Objects (TOs; a NLAGN with circumnuclear star formation) is relatively high, amounting to 64% of the galaxies. There is a definite trend for the NLAGNs to appear in early-type spirals, while the star forming galaxies and TOs are found in later-type spirals. We verify that the probability for a galaxy to show an AGN characteristic increases with the bulge mass of the galaxy (Torres-Papaqui et al. 2011), and find evidence that this trend is really a by-product of the morphology, suggesting that the AGN phenomenon is intimately connected with the formation process of the galaxies. Consistent with this interpretation, we establish a strong connection between the astration rate -- the efficiency with which the gas is transformed into stars - the AGN phenomenon, and the gravitational binding energy of the galaxies: the higher the binding energy, the higher the astration rate and the higher the probability to find an AGN. The NLAGNs in our sample are consistent with scaled-down or powered-down versions of quasars and Broad Line AGNs.

Cone search capability for table J/other/RMxAA/47.361/nelg (Properties and results of isolated Narrow-emission line galaxies)

Related Identifier
Related Identifier
Metadata Access
Creator Coziol R.; Torres-Papaqui J.P.; Plauchu-Frayn I.; Islas-Islas J.M.,Ortega-Minakata R.A.; Neri-Larios D.M.; Andernach H.
Publisher CDS
Publication Year 2011
OpenAccess true
Contact CDS support team <cds-question(at)>
Resource Type Dataset; AstroObjects
Discipline Astrophysics and Astronomy; Galactic and extragalactic Astronomy; High Energy Astrophysics; Interdisciplinary Astronomy; Natural Sciences; Observational Astronomy; Physics