Bicarbonate uptake via an anion exchange protein is the main mechanism of inorganic carbon acquisition by the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae) under variable pH

DOI

Macrocystis pyrifera is a widely distributed, highly productive, seaweed. It is known to use bicarbonate (HCO3-) from seawater in photosynthesis and the main mechanism of utilization is attributed to the external catalyzed dehydration of HCO3- by the surface-bound enzyme carbonic anhydrase (CAext). Here, we examined other putative HCO3- uptake mechanisms in M. pyrifera under pHT 9.00 (HCO3-: CO2 = 940:1) and pHT 7.65 (HCO3-: CO2 = 51:1). Rates of photosynthesis, and internal CA (CAint) and CAext activity were measured following the application of AZ which inhibits CAext, and DIDS which inhibits a different HCO3- uptake system, via an anion exchange (AE) protein. We found that the main mechanism of HCO3- uptake by M. pyrifera is via an AE protein, regardless of the HCO3-: CO2 ratio, with CAext making little contribution. Inhibiting the AE protein led to a 55%-65% decrease in photosynthetic rates. Inhibiting both the AE protein and CAext at pHT 9.00 led to 80%-100% inhibition of photosynthesis, whereas at pHT 7.65, passive CO2 diffusion supported 33% of photosynthesis. CAint was active at pHT 7.65 and 9.00, and activity was always higher than CAext, because of its role in dehydrating HCO3- to supply CO2 to RuBisCO. Interestingly, the main mechanism of HCO3- uptake in M. pyrifera was different than that in other Laminariales studied (CAext-catalyzed reaction) and we suggest that species-specific knowledge of carbon uptake mechanisms is required in order to elucidate how seaweeds might respond to future changes in HCO3-:CO2 due to ocean acidification.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne et al, 2014) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2014-12-02.

Supplement to: Fernández, Pamela A; Hurd, Catriona L; Roleda, Michael Y (2014): Bicarbonate uptake via an anion exchange protein is the main mechanism of inorganic carbon acquisition by the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae) under variable pH. Journal of Phycology, 50(6), 998-1008

Identifier
DOI https://doi.org/10.1594/PANGAEA.839919
Related Identifier IsSupplementTo https://doi.org/10.1111/jpy.12247
Related Identifier IsDocumentedBy https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.839919
Provenance
Creator Fernández, Pamela A; Hurd, Catriona L ORCID logo; Roleda, Michael Y ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2014
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 465 data points
Discipline Earth System Research
Spatial Coverage (170.717 LON, -45.783 LAT)
Temporal Coverage Begin 2013-02-01T00:00:00Z
Temporal Coverage End 2013-02-28T00:00:00Z