Seawater carbonate chemistry and physiology and toxicity of the dinoflagellate Karenia mikimotoi, supplement to: Wang, Hong; Niu, Xiaoqin; Feng, Xinqian; Gonçalves, Rodrigo J; Guan, WanChun (2019): Effects of ocean acidification and phosphate limitation on physiology and toxicity of the dinoflagellate Karenia mikimotoi. Harmful Algae, 87, 101621


This work demonstrated a 10-day batch culture experiment to test the physiology and toxicity of harmful dinoflagellate Karenia mikimotoi in response to ocean acidification (OA) under two different phosphate concentrations. Cells were previously acclimated in OA (pH = 7.8 and CO2 = 1100 μatm) condition for about three months before testing the responses of K. mikimotoi cells to a two-factorial combinations experimentation. This work measured the variation in physiological parameters (growth, rETR) and toxicity (hemolytic activity and its toxicity to zebrafish embryos) in four treatments, representing two factorial combinations of CO2 (450 and 1100 μatm) and phosphate concentration (37.75 and 4.67 umol l−1). Results: OA stimulated the faster growth, and the highest rETRmax in high phosphate (HP) treatment, low phosphate (LP) and a combination of high CO2 and low phosphate (HCLP) inhibited the growth and Ek in comparison to low CO2high phosphate (LCHP) treatment. The embryotoxicity of K. mikimotoi cells enhanced in all high CO2 (HC) conditions irrespective of phosphate concentration, but the EC50 of hemolytic activity increased in all high CO2 (HC) and low phosphate (LP) treatments in comparison of LCHP. Ocean acidification (high CO2 and lower pH) was probably the main factor that affected the rETRmax, hemolytic activity and embryotoxicity, but low phosphate was the main factor that affected the growth, α, and Ek. There were significant interactive effects of OA and low phosphate (LP) on growth, rETRmax, and hemolytic activity, but there were no significant effects on α, Ek, and embryotoxicity. If these results are extrapolated to the aquatic environment, it can be hypothesized that the K. mikimotoi cells were impacted significantly by future changing ocean (e.g., ocean acidification and nutrient stoichiometry).

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2019) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2019-09-30.

Related Identifier
Related Identifier
Metadata Access
Creator Wang, Hong; Niu, Xiaoqin; Feng, Xinqian; Gonçalves, Rodrigo J; Guan, WanChun
Publisher PANGAEA - Data Publisher for Earth & Environmental Science
Contributor Yang, Yan
Publication Year 2019
Rights Creative Commons Attribution 4.0 International;
OpenAccess true
Language English
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 8248 data points
Discipline Immunology; Life Sciences; Medicine; Microbiology, Virology and Immunology