(Tables T1, T2) Major element content in alteration categories of ODP Site 193-1188 and Hole 193-1189A, PACMANUS field

DOI

In the Ocean Drilling Program's only foray to an active seafloor hydrothermal system hosted by felsic volcanic rocks at a convergent plate margin, deep penetrations were achieved at two contrasted sites within the PACMANUS field (Manus backarc basin, Papua New Guinea). Just 1.0 km apart, these sites are characterized, respectively, by diffuse low-temperature venting at the seabed (Site 1188, Snowcap site; 1650 meters below sea level [mbsl]) and focused high-temperature venting (Site 1189, Roman Ruins; 1700 mbsl). Shallow holes at a background location remote from known hydrothermal activity (Site 1190) and at a second high-temperature chimney field (Site 1191, Satanic Mills) failed to drill beyond unaltered felsic lavas which at Sites 1188 and 1189 form an impervious cap (as thick as 35 m) to an underlying, pervasively altered lava sequence with occasional volcaniclastic horizons.To the maximum depth drilled (387 meters below seafloor [mbsf]), alteration assemblages are characterized by clay minerals and ubiquitous disseminated pyrite. Hydrothermal K-feldspar at Site 1189 differentiates it from Site 1188 where, by contrast, several intervals of pyrophyllite-bearing acid sulfate alteration suggest input from magmatic volatiles. At both deeply penetrated sites the dominant silica phase in alteration assemblages changes downhole from opal-A at the transition from overlying unaltered lava to cristobalite and then to quartz. The boundary between the cristobalite and quartz domains is gradational between 60 and 110 mbsf in Hole 1188A under Snowcap but is sharper and shallower (~25 mbsf) in Hole 1189A on the fringes of the Roman Ruins field. Hole 1189B, higher on the Roman Ruins mound, intersected a "Stockwork Zone" with abundant quartz ± pyrite ± anhydrite veins and breccia infills, from base of casing (31 mbsf) to ~110 mbsf, below which an abrupt change occurred to a "Lower Sequence" with interleaved cristobalite- and quartz-bearing assemblages and common preservation of igneous plagioclase. Only two thin intervals of sulfide-rich mineralization were encountered, both below the Roman Ruins chimney field.

Supplement to: Binns, Raymond A; Barriga, Fernando J A S; Miller, D Jay (2007): Leg 193 synthesis: Anatomy of an active felsic-hosted hydrothermal system, eastern Manus Basin, Papua New Guinea. In: Barriga, FJAS; Binns, RA; Miller, DJ; Herzig, PM (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 193, 1-71

Identifier
DOI https://doi.org/10.1594/PANGAEA.778790
Related Identifier https://doi.org/10.2973/odp.proc.sr.193.201.2007
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.778790
Provenance
Creator Binns, Raymond A; Barriga, Fernando J A S ORCID logo; Miller, D Jay
Publisher PANGAEA
Publication Year 2007
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 133 data points
Discipline Earth System Research
Spatial Coverage (151.670W, -3.728S, 151.675E, -3.721N); Bismarck Sea
Temporal Coverage Begin 2000-11-18T17:30:00Z
Temporal Coverage End 2000-12-30T04:00:00Z