This dataset contains the necessary code for using our soot (instance) segmentation model used for segmenting soot filaments from PIV (Mie scattering) images. In the corresponding paper, an ablation study is conducted to delineate the effects of domain randomisation parameters of synthetically generated training data on the segmentation accuracy. The best model is used to extract high-level statistics from soot filaments in an RQL-type model combustor to enhance the fundamental understanding soot formation, transport and oxidation. B. Jose, K. P. Geigle, F. Hampp, Domain-Randomised Instance-Segmentation Benchmark for Soot in PIV Images, submitted to Machine Learning: Science and Technology (2025)
Python, 3.8.10