Catalog of stellar atmospheric parameters

DOI

The precise determination of stellar atmospheric parameters (effective temperature T_eff_, surface gravity log g, and metallicity [Fe/H]) serves as a cornerstone for Galactic studies. This work aims to develop a novel deep learning-based approach, the Atmospheric CSWin Framework (ACF), to measure these parameters with high precision. The ACF employs a dual-input architecture that combines astrometric data (parallaxes and their corresponding errors) from Gaia Early Data Release 3 with photometric images from the fourth data release (DR4) of the SkyMapper Southern Survey (SMSS). The framework utilizes a CSWin Transformer backbone for hierarchical feature extraction from photometric images, integrated with Monte Carlo dropout in the prediction module for robust uncertainty quantification. Trained on cross-matched stars between SMSS DR4 and the third data release of the Galactic Archaeology with HERMES spectroscopic survey, ACF achieves parameter estimates with dispersions of 95.02K for T_eff_, 0.07dex for logg, and 0.14dex for [Fe/H]. Systematic experiments demonstrate: (1) Incorporating parallax information significantly improves the precision of all three parameters, especially logg; (2) Our image-based methods outperform traditional approaches relying on stellar magnitudes or colors, with improvements ranging from 2% to 14%; (3) The ACF achieves parameter estimates approaching those of high-resolution spectroscopic analyses; (4) Our framework remains effective even for low-quality samples, showcasing its robustness and generalizability. Using the ACF, we compiled a comprehensive catalog of atmospheric parameters for one million SMSS DR4 stars.

Cone search capability for table J/A+A/698/A322/catalog (Catalog of stellar atmospheric parameters)

Identifier
DOI http://doi.org/10.26093/cds/vizier.36980322
Source https://dc.g-vo.org/rr/q/lp/custom/CDS.VizieR/J/A+A/698/A322
Related Identifier https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/698/A322
Related Identifier https://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/A+A/698/A322
Metadata Access http://dc.g-vo.org/rr/q/pmh/pubreg.xml?verb=GetRecord&metadataPrefix=oai_b2find&identifier=ivo://CDS.VizieR/J/A+A/698/A322
Provenance
Creator Li S.; Wu F.; Bu Y.; Zhang M.; Zhang J.; Yi Z.; Liu M.; Kong X.
Publisher CDS
Publication Year 2025
Rights https://cds.unistra.fr/vizier-org/licences_vizier.html
OpenAccess true
Contact CDS support team <cds-question(at)unistra.fr>
Representation
Resource Type Dataset; AstroObjects
Discipline Astrophysics and Astronomy; Interdisciplinary Astronomy; Natural Sciences; Observational Astronomy; Physics