Seawater carbonate chemistry and in situ and laboratory measurements of calcification

DOI

Ocean acidification (OA) is generally assumed to negatively impact calcification rates of marine organisms. At a local scale however, biological activity of macrophytes may generate pH fluctuations with rates of change that are orders of magnitude larger than the long-term trend predicted for the open ocean. These fluctuations may in turn impact benthic calcifiers in the vicinity. Combining laboratory, mesocosm and field studies, such interactions between OA, the brown alga Fucus vesiculosus, the sea grass Zostera marina and the blue mussel Mytilus edulis were investigated at spatial scales from decimetres to 100s of meters in the western Baltic. Macrophytes increased the overall mean pH of the habitat by up to 0.3 units relative to macrophyte- free, but otherwise similar, habitats and imposed diurnal pH fluctuations with amplitudes ranging from 0.3 to more than 1 pH unit. These amplitudes and their impact on mussel calcification tended to increase with increasing macrophyte biomass to bulk water ratio. At the laboratory and mesocosm scales, biogenic pH fluc- tuations allowed mussels to maintain calcification even under acidified conditions by shifting most of their calcification activity into the daytime when biogenic fluctuations caused by macrophyte activity offered temporal refuge from OA stress. In natural habitats with a low biomass to water body ratio, the impact of biogenic pH fluctuations on mean calcification rates of M. edulis was less pronounced. Thus, in dense algae or seagrass habitats, macrophytes may mitigate OA impact on mussel calcification by raising mean pH and providing temporal refuge from acidification stress.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2022-3-14.

Identifier
DOI https://doi.org/10.1594/PANGAEA.942326
Related Identifier https://doi.org/10.1002/lno.10608
Related Identifier https://doi.org/10.1594/PANGAEA.911128
Related Identifier https://doi.org/10.1594/PANGAEA.911120
Related Identifier https://doi.org/10.1594/PANGAEA.910347
Related Identifier https://cran.r-project.org/web/packages/seacarb/index.html
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.942326
Provenance
Creator Wahl, Martin ORCID logo; Schneider Covachã, Sabrina; Saderne, Vincent ORCID logo; Hiebenthal, Claas ORCID logo; Müller, Jens Daniel ORCID logo; Pansch, Christian ORCID logo; Sawall, Yvonne ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2018
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Dataset
Format text/tab-separated-values
Size 1910 data points
Discipline Earth System Research
Spatial Coverage (10.179W, 54.356S, 10.184E, 54.447N); Kiel Fjord
Temporal Coverage Begin 2012-10-17T00:00:00Z
Temporal Coverage End 2013-05-31T00:00:00Z