Hysteresis between coral reef calcification and the seawater aragonite saturation state

DOI

Some predictions of how ocean acidification (OA) will affect coral reefs assume a linear functional relationship between the ambient seawater aragonite saturation state (Omega a) and net ecosystem calcification (NEC). We quantified NEC in a healthy coral reef lagoon in the Great Barrier Reef during different times of the day. Our observations revealed a diel hysteresis pattern in the NEC versus Omega a relationship, with peak NEC rates occurring before the Omega a peak and relatively steady nighttime NEC in spite of variable Omega a. Net ecosystem production had stronger correlations with NEC than light, temperature, nutrients, pH, and Omega a. The observed hysteresis may represent an overlooked challenge for predicting the effects of OA on coral reefs. If widespread, the hysteresis could prevent the use of a linear extrapolation to determine critical Omega a threshold levels required to shift coral reefs from a net calcifying to a net dissolving state.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne et al, 2014) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2014-07-08.

Supplement to: McMahon, Ashly; Santos, Isaac R; Cyronak, Tyler; Eyre, Bradley D (2013): Hysteresis between coral reef calcification and the seawater aragonite saturation state. Geophysical Research Letters, 40(17), 4675-4679

Identifier
DOI https://doi.org/10.1594/PANGAEA.833887
Related Identifier IsSupplementTo https://doi.org/10.1002/grl.50802
Related Identifier IsDocumentedBy https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.833887
Provenance
Creator McMahon, Ashly; Santos, Isaac R (ORCID: 0000-0003-0524-842X); Cyronak, Tyler ORCID logo; Eyre, Bradley D ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2013
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 1204 data points
Discipline Earth System Research
Spatial Coverage (151.917 LON, -23.450 LAT)