The Solar Neighborhood. XLVII. Mdwarfs with STIS

DOI

We use HST/STIS optical spectroscopy of 10 M-dwarfs in five closely separated binary systems to test models of M-dwarf structure and evolution. Individual dynamical masses ranging from 0.083 to 0.405M{sun} for all stars are known from previous work. We first derive temperature, radius, luminosity, surface gravity, and metallicity by fitting the BT-Settl atmospheric models. We verify that our methodology agrees with empirical results from long-baseline optical interferometry for stars of similar spectral types. We then test whether or not evolutionary models can predict those quantities given the stars' known dynamical masses and the conditions of coevality and equal metallicity within each binary system. We apply this test to five different evolutionary model sets: the Dartmouth models, the MESA/MIST models, the models of Baraffe et al., the PARSEC models, and the YaPSI models. We find marginal agreement between evolutionary model predictions and observations, with few cases where the models respect the condition of coevality in a self-consistent manner. We discuss the pros and cons of each family of models and compare their predictive power.

Cone search capability for table J/AJ/161/172/table1 (*Astrometric Properties)

Identifier
DOI http://doi.org/10.26093/cds/vizier.51610172
Source https://dc.g-vo.org/rr/q/lp/custom/CDS.VizieR/J/AJ/161/172
Related Identifier https://cdsarc.cds.unistra.fr/viz-bin/cat/J/AJ/161/172
Related Identifier http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/AJ/161/172
Metadata Access http://dc.g-vo.org/rr/q/pmh/pubreg.xml?verb=GetRecord&metadataPrefix=oai_b2find&identifier=ivo://CDS.VizieR/J/AJ/161/172
Provenance
Creator Dieterich S.B.; Simler A.; Henry T.J.; Jao W.-C.
Publisher CDS
Publication Year 2021
Rights https://cds.unistra.fr/vizier-org/licences_vizier.html
OpenAccess true
Contact CDS support team <cds-question(at)unistra.fr>
Representation
Resource Type Dataset; AstroObjects
Discipline Astrophysics and Astronomy; Interdisciplinary Astronomy; Natural Sciences; Observational Astronomy; Physics; Stellar Astronomy