A genetic optimization strategy with generality in asymmetric organocatalysis as primary target

A catalyst possessing a broad substrate scope, in terms of both turnover and enantioselectivity, is sometimes called “general”. Despite their great utility in asymmetric synthesis, truly general catalysts are difficult or expensive to discover via traditional high-throughput screening and are, therefore, rare. Existing computational tools accelerate the evaluation of reaction conditions from a pre-defined set of experiments to identify the most general ones, but cannot generate entirely new catalysts with enhanced substrate breadth. For these reasons, we report an inverse design strategy based on the open-source genetic algorithm NaviCatGA and on the OSCAR database of organocatalysts to simultaneously probe the catalyst and substrate scope and optimize generality as primary target. We apply this strategy to the Pictet–Spengler condensation, for which we curate a database of 820 reactions, used to train statistical models of selectivity and activity. Starting from OSCAR, we define a combinatorial space of millions of catalyst possibilities, and perform evolutionary experiments on a diverse substrate scope that is representative of the whole chemical space of tetrahydro-β-carboline products. While privileged catalysts emerge, we show how genetic optimization can address the broader question of generality in asymmetric synthesis, extracting structure–performance relationships from the challenging areas of chemical space.

Identifier
Source https://archive.materialscloud.org/record/2023.164
Metadata Access https://archive.materialscloud.org/xml?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:materialscloud.org:1958
Provenance
Creator Gallarati, Simone; van Gerwen, Puck; Laplaza, Ruben; Brey, Lucien; Makaveev, Alexander; Corminboeuf, Clemence
Publisher Materials Cloud
Publication Year 2023
Rights info:eu-repo/semantics/openAccess; Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode
OpenAccess true
Contact archive(at)materialscloud.org
Representation
Language English
Resource Type Dataset
Discipline Materials Science and Engineering