Stellar X-ray emission plays an important role in the study of exoplanets as a proxy for stellar winds and as a basis for the prediction of extreme ultraviolet (EUV) flux, unavailable for direct measurements, which in their turn are important factors for the mass-loss of planetary atmospheres. Unfortunately, the detection thresholds limit the number of stars with the directly measured X-ray fluxes. At the same time, the known connection between the sunspots and X-ray sources allows using of the starspot variability as an accessible proxy for the stellar X-ray emission. To realize this approach, we analysed the light curves of 1729 main-sequence stars with rotation periods 0.5<P<30d and effective temperatures 3236<Teff<7166K observed by the Kepler mission. It was found that the squared amplitude of the first rotational harmonic of a stellar light curve may be used as a kind of activity index. This averaged index revealed practically the same relation with the Rossby number as that in the case of the X-ray to bolometric luminosity ratio R_x_. As a result, the regressions for stellar X-ray luminosity L_x_(P, T_eff_) and its related EUV analogue L_EUV_ were obtained for the main-sequence stars. It was shown that these regressions allow prediction of average (over the considered stars) values of log(L_x_) and log(L_EUV_) with typical errors of 0.26 and 0.22dex, respectively. This, however, does not include the activity variations in particular stars related to their individual magnetic activity cycles.
Cone search capability for table J/MNRAS/476/1224/table1 (The analysed stellar set, applied parameters, and predictions)
Cone search capability for table J/MNRAS/476/1224/table3 (Parameters and predictions for stars in the catalogue by Wright et al. (2011ApJ...743...48W, Cat. J/ApJ/743/48))