Seawater carbonate chemistry and fish hearing

DOI

Humans are rapidly changing the marine environment through a multitude of effects, including increased greenhouse gas emissions resulting in warmer and acidified oceans. Elevated CO2 conditions can cause sensory deficits and altered behaviours in marine organisms, either directly by affecting end organ sensitivity or due to likely alterations in brain chemistry. Previous studies show that auditory-associated behaviours of larval and juvenile fishes can be affected by elevated CO2 (1000 µatm). Here, using auditory evoked potentials (AEP) and micro-computer tomography (microCT) we show that raising juvenile snapper, Chrysophyrs auratus, under predicted future CO2 conditions resulted in significant changes to their hearing ability. Specifically, snapper raised under elevated CO2 conditions had a significant decrease in low frequency (less than 200 Hz) hearing sensitivity. MicroCT demonstrated that these elevated CO2 snapper had sacculus otolith's that were significantly larger and had fluctuating asymmetry, which likely explains the difference in hearing sensitivity. We suggest that elevated CO2 conditions have a dual effect on hearing, directly effecting the sensitivity of the hearing end organs and altering previously described hearing induced behaviours. This is the first time that predicted future CO2 conditions have been empirically linked through modification of auditory anatomy to changes in fish hearing ability. Given the widespread and well-documented impact of elevated CO2 on fish auditory anatomy, predictions of how fish life-history functions dependent on hearing may respond to climate change may need to be reassessed.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2021-07-23.

Identifier
DOI https://doi.org/10.1594/PANGAEA.933962
Related Identifier IsSupplementTo https://doi.org/10.1098/rspb.2020.2754
Related Identifier IsDocumentedBy https://cran.r-project.org/web/packages/seacarb/index.html
Related Identifier IsDocumentedBy https://doi.org/10.17608/k6.auckland.13070348.v1
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.933962
Provenance
Creator Radford, C A ORCID logo; Collins, S P; Munday, Philip L ORCID logo; Parsons, Daniel R ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2021
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Dataset
Format text/tab-separated-values
Size 6284 data points
Discipline Earth System Research