A major question in galaxy formation is how the gas supply that fuels activity in galaxies is modulated by their environment. We use spectroscopy of a set of well-characterized clusters and groups at 0.45{AA} is f[OII]=0.08_-0.02_^+0.03^ and f[OII]=0.06_-0.04_^+0.07^, respectively. For field galaxies we find f[OII]=0.27_-0.06_^+0.07^, representing a 2.8{sigma} difference between the [OII] fractions for old galaxies between the different environments. We conclude that a population of old galaxies in all environments has ionized gas that likely stems from stellar mass loss. In the field galaxies also experience gas accretion from the cosmic web, and in groups and clusters these galaxies have had their gas accretion shut off by their environment. Additionally, galaxies with emission preferentially avoid the virialized region of the cluster in position-velocity space. We discuss the implications of our results, among which is that gas accretion shutoff is likely effective at group halo masses (logM/M_{sun}_>12.8) and that there are likely multiple gas removal processes happening in dense environments.
Cone search capability for table J/ApJ/850/181/table1 (Cluster and group data)
Cone search capability for table J/ApJ/850/181/table2 (Galaxy data)