This dataset contains a series of analog models for comparing and testing positive tectonic inversion mechanisms and wedge structure formation. Furthermore, it includes a 2-D seismic reflection profile that can be compared with the models presented here. Finally, several photos of some structural features that cab be associated with wedge structure are shown. Both seismic lines and photos are located on a segment of Andean forearc, specifically, in the eastern Domeyko Cordillera and the Salar de Atacama Basin in northern Chile.
Specifically, the models were deformed under extensional and compressional conditions, inducing a positive tectonic inversion, using a pure/simple-shear deformational apparatus. Our models intended to simulate the tectonic conditions presented in López et al. (2022), which illustrated the structural setting of the Domeyko Cordillera as resulting from the interplay between positive inversion tectonics and pure shortening faulting. Moreover, our models simulated three geological environments that developed sequentially through time: (a) syn-rift sedimentation, (b) post-rift and pre-shortening sedimentation, and (c) syn-shortening sedimentation. Post-rift and syn-shortening sedimentation incorporated a ductile layer (PDMS) during the shortening phase, simulating the presence of evaporitic deposits (i.e., gypsum) to test the conditions that could have controlled the formation of pure-shortening-related structures in the case study under consideration.